
VolSync

The VolSync authors

Feb 23, 2023

CONTENTS

1 Installation 1
1.1 Development . 1
1.2 RBAC permissions . 2
1.3 Kubernetes & OpenShift . 4

2 Usage 9
2.1 Triggers . 9
2.2 Metrics & monitoring . 11
2.3 Rclone-based replication . 16
2.4 Restic-based backup . 24
2.5 Rsync-based replication . 37
2.6 Syncthing-based replication . 50
2.7 VolSync CLI / kubectl plugin . 66
2.8 Triggers . 76
2.9 Metrics . 76

3 Enhancement proposals 77
3.1 A case for VolSync . 77
3.2 Configuration and CRDs . 80
3.3 Rsync-based data mover . 82
3.4 Restic-based data mover . 84
3.5 RWO volume affinity . 86

i

ii

CHAPTER

ONE

INSTALLATION

1.1 Development

If you are developing VolSync, there are a few options to get up-and-running. All of these options will assume the use
of a local kind cluster.

Once you have kind installed, there is a convenient script in the hack/ directory that will get a cluster running and
properly configured.

$./hack/setup-kind-cluster.sh

Once you have a cluster running, you can either build and deploy the operator in the cluster, or you can run the operator
locally against the cluster.

Build & deploy

The below command will build all containers (operator and movers) from the local source, inject them into the running
kind cluster, then use the local helm templates to start the operator.

Build, inject, and run
$./hack/run-in-kind.sh

Run locally

The below commands will run the operator binary locally, but the mover containers will be pulled from Quay (latest
tag). This option is good when developing the operator code since it permits fast rebuilds and easy access to the operator
logs.

Install VolSync CRDs into the cluster
$ make install

Run the operator locally
$ make run

If you will be working with the Rclone or Restic movers, you may want to deploy Minio in the kind cluster to act as an
object repository. It can be started via:

$./hack/run-minio.sh

1

https://kind.sigs.k8s.io/

VolSync

1.2 RBAC permissions

Once the VolSync operator has been installed, it is ready for use in the cluster, but only those with cluster administrator
privileges have permission to use it.

In order for the operator to be used, it is necessary to have the ability to access VolSync’s ReplicationSource and
ReplicationDestination custom resource objects. It is recommended that users be allowed to manage data replication
within the namespaces that they are assigned. This enables “self-service” data protection for the cluster’s users.

The below RBAC rules give users access to VolSync’s CRs within the namespaces that they manage. It also grants
access to VolumeSnapshot objects so that users can easily “promote” the latest destination snapshot, if necessary, during
recovery/fail-over.

Listing 1: volsync-rbac.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: volsync-edit
labels:
Grant access to namespace admins
rbac.authorization.k8s.io/aggregate-to-admin: "true"
Grant access to namespace editors
rbac.authorization.k8s.io/aggregate-to-edit: "true"

rules:
Give users full control of ReplicationSource and ReplicationDestination
objects so they can manage data replication
- apiGroups:

- volsync.backube
resources:
- replicationdestinations
- replicationsources

verbs:
- create
- delete
- deletecollection
- get
- list
- patch
- update
- watch

- apiGroups:
- volsync.backube

resources:
- replicationdestinations/status
- replicationsources/status

verbs:
- get
- list
- watch

Give users the ability to view VolumeSnapshots so they can "promote" the
destination snapshots into usable PVCs
- apiGroups:

(continues on next page)

2 Chapter 1. Installation

VolSync

(continued from previous page)

- snapshot.storage.k8s.io
resources:

- volumesnapshots
- volumesnapshots/status

verbs:
- get
- list
- watch

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: volsync-view
labels:
Grant access to namespace viewers
rbac.authorization.k8s.io/aggregate-to-view: "true"

rules:
Give users read access to ReplicationSource and ReplicationDestination
objects so they can monitor data replication
- apiGroups:

- volsync.backube
resources:
- replicationdestinations
- replicationsources
- replicationdestinations/status
- replicationsources/status

verbs:
- get
- list
- watch

Give users the ability to monitor (destination) VolumeSnapshots
- apiGroups:

- snapshot.storage.k8s.io
resources:
- volumesnapshots
- volumesnapshots/status

verbs:
- get
- list
- watch

The following directions will walk through the process of deploying VolSync.

Note: Volume snapshot and clone capabilities are required for some VolSync functionality. It is recommended that
you use a CSI driver and StorageClass capable of snapshotting and cloning volumes.

There are several methods for installing VolSync. Choose the option that relates to your situation.

1.2. RBAC permissions 3

VolSync

Warning: VolSync requires the Kubernetes snapshot controller to be installed within a cluster. If the controller is
not deployed review the snapshot controller documentation https://github.com/kubernetes-csi/external-snapshotter.

1.3 Kubernetes & OpenShift

The recommended method for deploying VolSync is via its Helm chart.

Add the Backube Helm repo
$ helm repo add backube https://backube.github.io/helm-charts/

Deploy the chart in your cluster
$ helm install --create-namespace -n volsync-system volsync backube/volsync

Verify VolSync is running by checking the output of kubectl get deploy:

$ kubectl -n volsync-system get deploy/volsync
NAME READY UP-TO-DATE AVAILABLE AGE
volsync 1/1 1 1 60s

1.3.1 Configuring CSI storage

To make the most of VolSync’s capabilities, it’s important that the volumes being replicated are using CSI-based storage
drivers and that volume snapshotting is properly configured.

The currently configured StorageClasses can be viewed via:

$ kubectl get storageclasses

And the VolumeSnapshotClasses can be viewed via:

$ kubectl get volumesnapshotclasses

StorageClasses that carry the storageclass.kubernetes.io/is-default-class: "true" and VolumeSnap-
shotClasses that carry the snapshot.storage.kubernetes.io/is-default-class: "true" annotations are
marked as the defaults on the cluster, meaning that if the class is not specified, these defaults will be used. How-
ever, it is not necessary to set or modify the default on your cluster since the classes can be specified directly in the
ReplicationSource and ReplicationDestination objects used by VolSync.

Below are examples of configured CSI storage on a few different cloud platforms. Your configuration may be different.

AWS

The EBS CSI driver on AWS-based clusters is usually named gp2-csi or gp3-csi.

List StorageClasses
$ kubectl get storageclasses
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ␣
→˓ALLOWVOLUMEEXPANSION AGE
gp2 (default) kubernetes.io/aws-ebs Delete WaitForFirstConsumer true ␣
→˓ 25m
gp2-csi ebs.csi.aws.com Delete WaitForFirstConsumer true ␣
→˓ 25m

(continues on next page)

4 Chapter 1. Installation

https://github.com/kubernetes-csi/external-snapshotter
https://artifacthub.io/packages/helm/backube-helm-charts/volsync

VolSync

(continued from previous page)

gp3-csi ebs.csi.aws.com Delete WaitForFirstConsumer true ␣
→˓ 25m

View details of the gp2-csi SC
$ kubectl get storageclass/gp2-csi -oyaml
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

creationTimestamp: "2022-02-08T14:03:20Z"
name: gp2-csi
resourceVersion: "5288"
uid: 24d2cee6-1346-4c3e-8742-39dec08e3e50

parameters:
encrypted: "true"
type: gp2

provisioner: ebs.csi.aws.com
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer

Azure

The CSI driver on Azure-based clusters is usually named managed-csi.

List StorageClasses
$ kubectl get storageclasses
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE␣
→˓ ALLOWVOLUMEEXPANSION AGE
managed-csi disk.csi.azure.com Delete ␣
→˓WaitForFirstConsumer true 45m
managed-premium (default) kubernetes.io/azure-disk Delete ␣
→˓WaitForFirstConsumer true 46m

View details of the managed-csi SC
$ kubectl get storageclass/managed-csi -oyaml
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

creationTimestamp: "2022-02-08T14:57:23Z"
name: managed-csi
resourceVersion: "5853"
uid: 3aeba0d1-6c52-481c-9dc1-786ae84a2f7b

parameters:
skuname: Premium_LRS

provisioner: disk.csi.azure.com
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer

GCP

The CSI driver on GCP-based clusters is usually named standard-csi.

1.3. Kubernetes & OpenShift 5

VolSync

List StorageClasses
$ kubectl get storageclasses
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ␣
→˓ALLOWVOLUMEEXPANSION AGE
standard (default) kubernetes.io/gce-pd Delete WaitForFirstConsumer true␣
→˓ 15m
standard-csi pd.csi.storage.gke.io Delete WaitForFirstConsumer true␣
→˓ 15m

View details of the standard-csi SC
$ kubectl get storageclass/standard-csi -oyaml
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

creationTimestamp: "2022-02-08T13:24:53Z"
name: standard-csi
resourceVersion: "5976"
uid: 066a43fc-798f-49a7-b62a-0350e8946364

parameters:
replication-type: none
type: pd-standard

provisioner: pd.csi.storage.gke.io
reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer

vSphere

The CSI driver on vSphere-based clusters is usually named thin-csi.

List StorageClasses
$ kubectl get storageclasses
NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ␣
→˓ALLOWVOLUMEEXPANSION AGE
thin (default) kubernetes.io/vsphere-volume Delete Immediate ␣
→˓false 20m
thin-csi csi.vsphere.vmware.com Delete WaitForFirstConsumer ␣
→˓true 18m

View details of the thin-csi SC
$ kubectl get storageclass/thin-csi -oyaml
allowVolumeExpansion: true
apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:

creationTimestamp: "2022-02-08T16:48:52Z"
name: thin-csi
resourceVersion: "9789"
uid: 80d45374-8447-47eb-950c-2568af070d6e

parameters:
StoragePolicyName: openshift-storage-policy-ci-ln-54d2r5t-c1627-jvkws

provisioner: csi.vsphere.vmware.com
(continues on next page)

6 Chapter 1. Installation

VolSync

(continued from previous page)

reclaimPolicy: Delete
volumeBindingMode: WaitForFirstConsumer

You should also verify the presence of a corresponding VolumeSnapshotClass. Note that the name of the SC and VSC
do not need to be the same, but the provisioner/driver should be.

AWS

List VolumeSnapshotClasses
$ kubectl get volumesnapshotclasses
NAME DRIVER DELETIONPOLICY AGE
csi-aws-vsc ebs.csi.aws.com Delete 23m

View details of the csi-aws-vsc VSC
$ kubectl get volumesnapshotclass/csi-aws-vsc -oyaml
apiVersion: snapshot.storage.k8s.io/v1
deletionPolicy: Delete
driver: ebs.csi.aws.com
kind: VolumeSnapshotClass
metadata:

annotations:
snapshot.storage.kubernetes.io/is-default-class: "true"

creationTimestamp: "2022-02-08T14:03:20Z"
generation: 1
name: csi-aws-vsc
resourceVersion: "5301"
uid: d990af7b-d2ae-4a49-8cfe-fd5ae93902df

Important: The AWS EBS CSI driver does not support volume cloning. When configuring replication with
VolSync, be sure to choose a copyMethod of Snapshot for the source volume. Choosing Clone will not work.

Azure

List VolumeSnapshotClasses
$ kubectl get volumesnapshotclasses
NAME DRIVER DELETIONPOLICY AGE
csi-azuredisk-vsc disk.csi.azure.com Delete 48m

View details of the csi-azuredisk-vsc VSC
$ kubectl get volumesnapshotclass/csi-azuredisk-vsc -oyaml
apiVersion: snapshot.storage.k8s.io/v1
deletionPolicy: Delete
driver: disk.csi.azure.com
kind: VolumeSnapshotClass
metadata:

annotations:
snapshot.storage.kubernetes.io/is-default-class: "true"

creationTimestamp: "2022-02-08T14:57:23Z"
generation: 1
name: csi-azuredisk-vsc

(continues on next page)

1.3. Kubernetes & OpenShift 7

VolSync

(continued from previous page)

resourceVersion: "5847"
uid: 1d105f8c-4e49-48e1-8ead-927f90f4bb2e

parameters:
incremental: "true"

GCP

List VolumeSnapshotClasses
$ kubectl get volumesnapshotclasses
NAME DRIVER DELETIONPOLICY AGE
csi-gce-pd-vsc pd.csi.storage.gke.io Delete 17m

View details of the csi-gce-pd-vsc VSC
$ kubectl get volumesnapshotclass/csi-gce-pd-vsc -oyaml
apiVersion: snapshot.storage.k8s.io/v1
deletionPolicy: Delete
driver: pd.csi.storage.gke.io
kind: VolumeSnapshotClass
metadata:

annotations:
snapshot.storage.kubernetes.io/is-default-class: "true"

creationTimestamp: "2022-02-08T13:24:53Z"
generation: 1
name: csi-gce-pd-vsc
resourceVersion: "5981"
uid: 886de96d-820c-403b-8570-fcfb37939532

vSphere

At this time (Feb 2022), volume snapshotting is an alpha feature in the vSphere CSI driver and not enabled by default.
If you are interested in trying it out, please consult VMware’s documentation.

Next, consider granting users access to VolSync’s custom resources so that they can manage their own data replication.

Continue to the usage docs.

8 Chapter 1. Installation

CHAPTER

TWO

USAGE

2.1 Triggers

There are three types of triggers in volsync:

1. Always - no trigger, always run.

2. Schedule - defined by a cronspec.

3. Manual - request to trigger once.

See the sections below with details on each trigger type.

2.1.1 Always

spec:
trigger: {}

This option is set either by omitting the trigger field completely or by setting it to empty object. In both cases the effect
is the same - keep replicating all the time.

When using Rsync-based replication, the destination should be set to always-listen for incoming replications from the
source. Therefore, the default configuration for rsync destination is with no trigger, which keeps waiting for the next
trigger by the source to connect.

In this case status.nextSyncTime will not be set, but status.lastSyncTime will be set at the end of every repli-
cation.

2.1.2 Schedule

spec:
trigger:
schedule: "*/6 * * * *"

The synchronization schedule, .spec.trigger.schedule, is defined by a cronspec, making the schedule very flexi-
ble. Both intervals (shown above) as well as specific times and/or days can be specified.

In this case status.nextSyncTime will be set to the next schedule time based on the cronspec, and status.
lastSyncTime will be set at the end of every replication.

9

https://en.wikipedia.org/wiki/Cron#Overview

VolSync

2.1.3 Manual

spec:
trigger:
manual: my-manual-id-1

Manual trigger is used for running one replication and wait for it to complete. This is useful to control the replication
schedule from an external automation (for example using quiesce for live migration).

To use the manual trigger choose a string value and set it in spec.trigger.manual which will start a replication.
Once replication completes, status.lastManualSync will be set to the same string value. As long as these two
values are the same there will be no trigger, and the replication will remain paused, until further updates to the trigger
spec.

After setting the manual trigger in spec, the user should watch for status.lastManualSync and wait for it to have
the expected value, which means that the manual trigger completed. If needed, the user can then continue to update
spec.trigger.manual to a new value in order to trigger another replication.

Something to keep in mind when using manual trigger - the update of spec.trigger.manual by itself does not
interrupt a running replication, and status.lastManualSync will simply be set to the value from the spec when the
current replication completes. This means that to make sure we know when the replication started, and that it includes
the latest data, it is recommended to wait until status.lastManualSync equals to spec.trigger.manual before
setting to a new value.

In this case status.nextSyncTime will not be set, but status.lastSyncTime will be set at the end of every repli-
cation.

Here is an example of how to use manual trigger to run two replications:

MANUAL=first
SOURCE=source1

create source replication with first manual trigger (will start immediately)
kubectl create -f - <<EOF
apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: $SOURCE

spec:
trigger:
manual: $MANUAL

...
EOF

waiting for first trigger to complete...
while ["$LAST_MANUAL_SYNC" != "$MANUAL"]
do
sleep 1
LAST_MANUAL_SYNC=$(kubectl get replicationsource $SOURCE --template={{.status.

→˓lastManualSync}})
echo " - LAST_MANUAL_SYNC: $LAST_MANUAL_SYNC"

done

set a second manual trigger
MANUAL=second

(continues on next page)

10 Chapter 2. Usage

VolSync

(continued from previous page)

kubectl patch replicationsources $SOURCE --type merge -p '{"spec":{"trigger":{"manual":"'
→˓$MANUAL'"}}}'

waiting for second trigger to complete...
while ["$LAST_MANUAL_SYNC" != "$MANUAL"]
do
sleep 1
LAST_MANUAL_SYNC=$(kubectl get replicationsource $SOURCE --template={{.status.

→˓lastManualSync}})
echo " - LAST_MANUAL_SYNC: $LAST_MANUAL_SYNC"

done

after second trigger is done we delete the replication...
kubectl delete replicationsources $SOURCE

2.2 Metrics & monitoring

In order to support monitoring of replication relationships, VolSync exports a number of metrics that can be scraped
with Prometheus. These metrics permit monitoring whether volumes are “in sync” and how long the synchronization
iterations take.

2.2.1 Available metrics

The following metrics are provided by VolSync for each replication object (source or destination):

volsync_missed_intervals_total
This is a count of the number of times that a replication iteration failed to complete before the next scheduled
start. This metric is only valid for objects that have a schedule (.spec.trigger.schedule) specified. For
example, when using the rsync mover with a schedule on the source but not on the destination, only the metric
for the source side is meaningful.

volsync_sync_duration_seconds
This is a summary of the time required for each sync iteration. By monitoring this value it is possible to determine
how much “slack” exists in the synchronization schedule (i.e., how much less is the sync duration than the
schedule frequency).

volsync_volume_out_of_sync
This is a gauge that has the value of either “0” or “1”, with a “1” indicating that the volumes are not currently
synchronized. This may be due to an error that is preventing synchronization or because the most recent syn-
chronization iteration failed to complete prior to when the next should have started. This metric also requires a
schedule to be defined.

Each of the above metrics include the following labels to assist with monitoring and alerting:

obj_name
This is the name of the VolSync CustomResource

obj_namespace
This is the Kubernetes Namespace that contains the CustomResource

role
This contains the value of either “source” or “destination” depending on whether the CR is a ReplicationSource
or a ReplicationDestination.

2.2. Metrics & monitoring 11

VolSync

method
This indicates the synchronization method being used. Currently, “rsync” or “rclone”.

As an example, the below raw data comes from a single rsync-based relationship that is replicating data using the
ReplicationSource dsrc in the srcns namespace to the ReplicationDestination dest in the dstns namespace.

Listing 1: Example raw metrics data

$ curl -s http://127.0.0.1:8080/metrics | grep volsync

HELP volsync_missed_intervals_total The number of times a synchronization failed to␣
→˓complete before the next scheduled start
TYPE volsync_missed_intervals_total counter
volsync_missed_intervals_total{method="rsync",obj_name="dest",obj_namespace="dstns",
→˓role="destination"} 0
volsync_missed_intervals_total{method="rsync",obj_name="dsrc",obj_namespace="srcns",
→˓role="source"} 0
HELP volsync_sync_duration_seconds Duration of the synchronization interval in seconds
TYPE volsync_sync_duration_seconds summary
volsync_sync_duration_seconds{method="rsync",obj_name="dest",obj_namespace="dstns",role=
→˓"destination",quantile="0.5"} 179.725047058
volsync_sync_duration_seconds{method="rsync",obj_name="dest",obj_namespace="dstns",role=
→˓"destination",quantile="0.9"} 544.86628289
volsync_sync_duration_seconds{method="rsync",obj_name="dest",obj_namespace="dstns",role=
→˓"destination",quantile="0.99"} 544.86628289
volsync_sync_duration_seconds_sum{method="rsync",obj_name="dest",obj_namespace="dstns",
→˓role="destination"} 828.711667153
volsync_sync_duration_seconds_count{method="rsync",obj_name="dest",obj_namespace="dstns
→˓",role="destination"} 3
volsync_sync_duration_seconds{method="rsync",obj_name="dsrc",obj_namespace="srcns",role=
→˓"source",quantile="0.5"} 11.547060835
volsync_sync_duration_seconds{method="rsync",obj_name="dsrc",obj_namespace="srcns",role=
→˓"source",quantile="0.9"} 12.013468222
volsync_sync_duration_seconds{method="rsync",obj_name="dsrc",obj_namespace="srcns",role=
→˓"source",quantile="0.99"} 12.013468222
volsync_sync_duration_seconds_sum{method="rsync",obj_name="dsrc",obj_namespace="srcns",
→˓role="source"} 33.317039014
volsync_sync_duration_seconds_count{method="rsync",obj_name="dsrc",obj_namespace="srcns
→˓",role="source"} 3
HELP volsync_volume_out_of_sync Set to 1 if the volume is not properly synchronized
TYPE volsync_volume_out_of_sync gauge
volsync_volume_out_of_sync{method="rsync",obj_name="dest",obj_namespace="dstns",role=
→˓"destination"} 0
volsync_volume_out_of_sync{method="rsync",obj_name="dsrc",obj_namespace="srcns",role=
→˓"source"} 0

12 Chapter 2. Usage

VolSync

2.2.2 Obtaining metrics

The above metrics can be collected by Prometheus. If the cluster does not already have a running instance set to scrape
metrics, one will need to be started.

Configuring Prometheus

Kubernetes

The following steps start a simple Prometheus instance to scrape metrics from VolSync. Some platforms may already
have a running Prometheus operator or instance, making these steps unnecessary.

Start the Prometheus operator:

$ kubectl apply -f https://raw.githubusercontent.com/prometheus-operator/prometheus-
→˓operator/v0.46.0/bundle.yaml

Start Prometheus by applying the following block of yaml via:

$ kubectl create ns volsync-system
$ kubectl -n volsync-system apply -f -

apiVersion: v1
kind: ServiceAccount
metadata:
name: prometheus

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: prometheus

rules:
- apiGroups: [""]
resources:

- nodes
- services
- endpoints
- pods

verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources:

- configmaps
verbs: ["get"]

- nonResourceURLs: ["/metrics"]
verbs: ["get"]

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: prometheus

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: prometheus

(continues on next page)

2.2. Metrics & monitoring 13

VolSync

(continued from previous page)

subjects:
- kind: ServiceAccount
name: prometheus
namespace: volsync-system # Change if necessary!

apiVersion: monitoring.coreos.com/v1
kind: Prometheus
metadata:
name: prometheus

spec:
serviceAccountName: prometheus
serviceMonitorSelector:
matchLabels:
control-plane: volsync-controller

resources:
requests:
memory: 400Mi

OpenShift

If necessary, create a monitoring configuration in the openshift-user-workload-monitoring namespace and en-
able user workload monitoring:

Listing 2: Example user workload monitoring configuration

apiVersion: v1
kind: ConfigMap
metadata:
name: user-workload-monitoring-config
namespace: openshift-user-workload-monitoring

data:
config.yaml: |
Allocate persistent storage for user Prometheus
prometheus:
volumeClaimTemplate:
spec:
resources:
requests:
storage: 40Gi

Allocate persistent storage for user Thanos Ruler
thanosRuler:
volumeClaimTemplate:
spec:
resources:
requests:
storage: 40Gi

Listing 3: Enabling user workload monitoring

apiVersion: v1
kind: ConfigMap

(continues on next page)

14 Chapter 2. Usage

https://docs.openshift.com/container-platform/4.7/monitoring/configuring-the-monitoring-stack.html#creating-user-defined-workload-monitoring-configmap_configuring-the-monitoring-stack
https://docs.openshift.com/container-platform/4.7/monitoring/enabling-monitoring-for-user-defined-projects.html#enabling-monitoring-for-user-defined-projects_enabling-monitoring-for-user-defined-projects
https://docs.openshift.com/container-platform/4.7/monitoring/enabling-monitoring-for-user-defined-projects.html#enabling-monitoring-for-user-defined-projects_enabling-monitoring-for-user-defined-projects

VolSync

(continued from previous page)

metadata:
name: cluster-monitoring-config
namespace: openshift-monitoring

data:
config.yaml: |
Allocate persistent storage for alertmanager
alertmanagerMain:
volumeClaimTemplate:
spec:
resources:
requests:
storage: 40Gi

Enable user workload monitoring stack
enableUserWorkload: true
Allocate persistent storage for cluster prometheus
prometheusK8s:
volumeClaimTemplate:
spec:
resources:
requests:
storage: 40Gi

Monitoring VolSync

The metrics port for VolSync is (by default) protected via kube-auth-proxy. In order to grant Prometheus the ability to
scrape the metrics, its ServiceAccount must be granted access to the volsync-metrics-reader ClusterRole. This
can be accomplished by (substitute in the namespace & SA name of the Prometheus server):

$ kubectl create clusterrolebinding metrics --clusterrole=volsync-metrics-reader --
→˓serviceaccount=<namespace>:<service-account-name>

Optionally, authentication of the metrics port can be disabled by setting the Helm chart value metrics.disableAuth
to false when deploying VolSync.

A ServiceMonitor needs to be defined in order to scrape metrics. If the ServiceMonitor CRD was defined in the cluster
when the VolSync chart was deployed, this has already been added. If not, apply the following into the namespace
where VolSync is deployed. Note that the control-plane labels may need to be adjusted.

Listing 4: VolSync ServiceMonitor

apiVersion: monitoring.coreos.com/v1
kind: ServiceMonitor
metadata:
name: volsync-monitor
namespace: volsync-system
labels:
control-plane: volsync-controller

spec:
endpoints:
- interval: 30s
path: /metrics

(continues on next page)

2.2. Metrics & monitoring 15

https://book.kubebuilder.io/reference/metrics.html

VolSync

(continued from previous page)

port: https
scheme: https
tlsConfig:
Using self-signed cert for connection
insecureSkipVerify: true

selector:
matchLabels:
control-plane: volsync-controller

2.3 Rclone-based replication

2.3.1 Rclone Database Example

The following example will use the Rclone replication method to replicate a sample MySQL database.

First, create the source namespace and deploy the source MySQL database.

$ kubectl create ns source
$ kubectl create -f examples/source-database/ -n source

Verify the database is running.

$ kubectl get pods -n source
NAME READY STATUS RESTARTS AGE
mysql-8b9c5c8d8-24w6g 1/1 Running 0 17s

Add a new database.

$ kubectl exec --stdin --tty -n source `kubectl get pods -n source | grep mysql | awk '
→˓{print $1}'` -- /bin/bash
$ mysql -u root -p$MYSQL_ROOT_PASSWORD
> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+
4 rows in set (0.00 sec)

> create database synced;
> exit
$ exit

Now, deploy the rclone-secret followed by ReplicationSource configuration.

16 Chapter 2. Usage

VolSync

$ kubectl create secret generic rclone-secret --from-file=rclone.conf=./examples/rclone/
→˓rclone.conf -n source
$ kubectl create -f examples/rclone/volsync_v1alpha1_replicationsource.yaml -n source

To verify the replication has completed describe the Replication source.

$ kubectl describe ReplicationSource -n source database-source

From the output, the success of the replication can be seen by the following lines:

Status:
Conditions:
Last Transition Time: 2021-01-18T21:50:59Z
Message: Reconcile complete
Reason: ReconcileComplete
Status: True
Type: Reconciled

Next Sync Time: 2021-01-18T22:00:00Z

At Next Sync Time VolSync will create the next Rclone data mover job.

To complete the replication, create a destination, deploy rclone-secret and ReplicationDestination on the
destination.

$ kubectl create ns dest
$ kubectl create secret generic rclone-secret --from-file=rclone.conf=./examples/rclone/
→˓rclone.conf -n dest
$ kubectl create -f examples/rclone/volsync_v1alpha1_replicationdestination.yaml -n dest

Once the ReplicationDestination is deployed, VolSync will create a Rclone data mover job on the destination
side. At the end of the each successful iteration, the ReplicationDestination is updated with the latest snapshot
image.

Now deploy the MySQL database to the dest namespace which will use the data that has been replicated. First we need
to identify the latest snapshot from the ReplicationDestination object. Record the values of the latest snapshot as
it will be used to create a pvc. Then create the Deployment, Service, PVC, and Secret.

Ensure that the next synchronization cycle does not start while the following steps are being completed or VolSync may
replace the existing snapshot with a new one before the database starts.

Get the latest snapshot name
$ kubectl get replicationdestination database-destination -n dest --template={{.status.
→˓latestImage.name}}
Substitute that name into the database PVC template
$ sed -i 's/snapshotToReplace/volsync-dest-database-destination-20201203174504/g'␣
→˓examples/destination-database/mysql-pvc.yaml
Start the database
$ kubectl create -n dest -f examples/destination-database/

Validate that the mysql pod is running within the environment.

$ kubectl get pods -n dest
NAME READY STATUS RESTARTS AGE
mysql-8b9c5c8d8-v6tg6 1/1 Running 0 38m

2.3. Rclone-based replication 17

VolSync

Connect to the mysql pod and list the databases to verify the synced database exists.

$ kubectl exec --stdin --tty -n dest `kubectl get pods -n dest | grep mysql | awk '
→˓{print $1}'` -- /bin/bash
$ mysql -u root -p$MYSQL_ROOT_PASSWORD
> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| synced |
| sys |
+--------------------+
5 rows in set (0.00 sec)

> exit
$ exit

2.3.2 Understanding rclone-secret

The Rclone Secret provides the configuration details to locate and access the intermediary storage system. It is mounted
as a secret on the Rclone data mover pod and provided to the Rclone executable.

[aws-s3-bucket]
type = s3
provider = AWS
env_auth = false
access_key_id = *******
secret_access_key = ******
region = <region>
location_constraint = <region>
acl = private

In the above example AWS S3 is used as the backend for the intermediary storage system.

• [aws-s3-bucket]: Name of the remote

• type: Type of storage

• provider: Backend provider

• access_key_id: AWS credentials

• secret_access_key: AWS credentials

• region: Region to connect to

• location_constraint: Must be set to match the region

For detailed instructions follow the Rclone documentation on how to create an rclone.conf configuration file.

18 Chapter 2. Usage

https://rclone.org/docs/

VolSync

Deploy rclone-secret

Assuming the above example is placed in a local file, rclone.conf, the Secret can be created via:

Create the secret (remember to pass the correct namespace name)
$ kubectl create -n source secret generic rclone-secret --from-file=rclone.conf=rclone.
→˓conf
$ kubectl get -n source secrets
NAME TYPE DATA AGE
default-token-g9vdx kubernetes.io/service-account-token 3 20s
rclone-secret Opaque 1 17s

This Secret should be created on both the source and the destination locations.

Contents

Rclone-based replication

• Source configuration
– Source status
– Additional source options

• Destination configuration
– Destination status
– Additional destination options

Rclone-based replication supports 1:many asynchronous replication of volumes for use cases such as:

• High fan-out data replication from a central site to many (edge) sites

With this method, VolSync synchronizes data from a ReplicationSource to a ReplicationDestination using Rclone via
an intermediary object storage location like AWS S3.

The Rclone method uses a “push” and “pull” model for the data replication. This requires a schedule or other trigger
on both the source and destination sides to trigger the replication iterations.

During each synchronization iteration:

• A point-in-time (PiT) copy of the source volume is created using CSI drivers. This copy will be used as the
source data.

• The copy is attached to an Rclone data mover job pod which uses the contents of the rclone-secret to connect
to the intermediary object storage target (e.g., AWS S3).

• The source pod uses rclone sync to copy the data to S3.

• On the destination side, a corresponding Rclone mover pod syncs the data from the intermediate object storage
into a volume on the destination.

• At the conclusion of the transfer, the destination creates a snapshot copy to preserve a point-in-time copy of the
incoming source data.

VolSync is configured via two CustomResources (CRs), one on the source side and one on the destination side of the
replication relationship. While there should only be one ReplicationSource pushing data to the intermediate storage,
there may be an arbitrary number of ReplicationDestination instances syncing data from the intermediate storage to
destination clusters. This enables the model of high fan-out data distribution.

2.3. Rclone-based replication 19

https://rclone.org/

VolSync

2.3.3 Source configuration

An example source configuration is shown below:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: database-source
namespace: source

spec:
The PVC to sync
sourcePVC: mysql-pv-claim
trigger:
Synchronize every 6 minutes
schedule: "*/6 * * * *"

rclone:
The configuration section of the rclone config file to use
rcloneConfigSection: "aws-s3-bucket"
The path to the object bucket
rcloneDestPath: "volsync-test-bucket/mysql-pv-claim"
Secret holding the rclone configuration
rcloneConfig: "rclone-secret"
Method used to generate the PiT copy
copyMethod: Snapshot
The StorageClass to use when creating the PiT copy (same as source PVC if omitted)
storageClassName: my-sc-name
The VSC to use if the copy method is Snapshot (default if omitted)
volumeSnapshotClassName: my-vsc-name

Since the copyMethod specified above is Snapshot, the Rclone data mover creates a VolumeSnapshot of the source
pvc mysql-pv-claim. Then it converts this snapshot back into a PVC. If copyMethod: Clone were used, the
temporary, point-in-time copy would be created by cloning the source PVC to a new PVC directly. This is more
efficient, but it is not supported by all CSI drivers.

The synchronization schedule, .spec.trigger.schedule, is defined by a cronspec, making the schedule very flexi-
ble. Both intervals (shown above) as well as specific times and/or days can be specified.

Source status

Once the ReplicationSource is deployed, VolSync updates the nextSyncTime in the ReplicationSource object.

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
... omitted ...
spec:
rclone:
copyMethod: Snapshot
rcloneConfig: rclone-secret
rcloneConfigSection: aws-s3-bucket
rcloneDestPath: volsync-test-bucket/mysql-pv-claim
storageClassName: my-sc-name

(continues on next page)

20 Chapter 2. Usage

https://en.wikipedia.org/wiki/Cron#Overview

VolSync

(continued from previous page)

volumeSnapshotClassName: my-vsc-name
sourcePVC: mysql-pv-claim
trigger:
schedule: "*/6 * * * *"

status:
conditions:
lastTransitionTime: 2021-01-18T21:50:59Z
message: Reconcile complete
reason: ReconcileComplete
status: True
type: Reconciled

nextSyncTime: 2021-01-18T22:00:00Z

Additional source options

There are a number of more advanced configuration parameters that are supported for configuring the source. All of
the following options would be placed within the .spec.rclone portion of the ReplicationSource CustomResource.

accessModes
When using a copyMethod of Clone or Snapshot, this field allows overriding the access modes for the point-in-
time (PiT) volume. The default is to use the access modes from the source PVC.

capacity
When using a copyMethod of Clone or Snapshot, this allows overriding the capacity of the PiT volume. The
default is to use the capacity of the source volume.

copyMethod
This specifies the method used to create a PiT copy of the source volume. Valid values are:

• Clone - Create a new volume by cloning the source PVC (i.e., use the source PVC as the volumeSource for
the new volume.

• Direct - Do no create a PiT copy. The VolSync data mover will directly use the source PVC.

• Snapshot - Create a VolumeSnapshot of the source PVC, then use that snapshot to create the new volume.
This option should be used for CSI drivers that support snapshots but not cloning.

storageClassName
This specifies the name of the StorageClass to use when creating the PiT volume. The default is to use the same
StorageClass as the source volume.

volumeSnapshotClassName
When using a copyMethod of Snapshot, this specifies the name of the VolumeSnapshotClass to use. If not
specified, the cluster default will be used.

rcloneConfigSection
This is used to identify the configuration section within rclone.conf to use.

rcloneDestPath
This is the remote storage location in which the persistent data will be uploaded.

Normally the root of this path is the storage bucket name. Any sub paths would be created as folders in the
storage bucket.

In the example above, using volsync-test-bucket/mysql-pv-claimmeans that the source pvc will be repli-
cated to the folder called mysql-pv-claim in the bucket called volsync-test-bucket.

2.3. Rclone-based replication 21

VolSync

If a unique bucket is used for each PVC to be replicated, then a path with simply the bucket name (such as
volsync-test-bucket) is sufficient. However if the same bucket will be used for multiple different PVCs (and
therefore multiple ReplicationSources), a unique path should be used for each PVC/ReplicationSource.

rcloneConfig
This specifies the name of a secret to be used to retrieve the Rclone configuration. The content of the Secret is
an rclone.conf file.

2.3.4 Destination configuration

An example destination configuration is shown here:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationDestination
metadata:
name: database-destination
namespace: dest

spec:
trigger:
Every 6 minutes, offset by 3 minutes
schedule: "3,9,15,21,27,33,39,45,51,57 * * * *"

rclone:
rcloneConfigSection: "aws-s3-bucket"
rcloneDestPath: "volsync-test-bucket/mysql-pvc-claim"
rcloneConfig: "rclone-secret"
copyMethod: Snapshot
accessModes: [ReadWriteOnce]
capacity: 10Gi
storageClassName: my-sc
volumeSnapshotClassName: my-vsc

Similar to the replication source, a synchronization schedule is defined .spec.trigger.schedule. This indicates
when persistent data should be pulled from the remote storage location. It is important that the schedule for the desti-
nations are offset from that of the source to allow the source to finish pushing updates for an iteration prior to the the
destination attempting to pull them.

In the above example, a 10 GiB RWO volume will be provisioned using the my-sc StorageClass to serve as the desti-
nation for replicated data. This volume is used by the Rclone data mover to receive the incoming data transfers.

Since the copyMethod specified above is Snapshot, a VolumeSnapshot of the incoming data will be created at the
end of each synchronization interval. It is this snapshot that would be used to gain access to the replicated data. The
name of the current VolumeSnapshot holding the latest synced data will be placed in .status.latestImage.

22 Chapter 2. Usage

VolSync

Destination status

VolSync provides status information on the state of the replication via the .status field in the ReplicationDestination
object:

API Version: volsync.backube/v1alpha1
Kind: ReplicationDestination
... omitted ...
Spec:
Rclone:
Access Modes:
ReadWriteOnce

Capacity: 10Gi
Copy Method: Snapshot
Rclone Config: rclone-secret
Rclone Config Section: aws-s3-bucket
Rclone Dest Path: volsync-test-bucket
Storage Class Name: my-sc
Volume Snapshot Class Name: my-vsc

Status:
Conditions:
Last Transition Time: 2021-01-19T22:16:02Z
Message: Reconcile complete
Reason: ReconcileComplete
Status: True
Type: Reconciled

Last Sync Duration: 7.066022293s
Last Sync Time: 2021-01-19T22:16:02Z
Latest Image:
API Group: snapshot.storage.k8s.io
Kind: VolumeSnapshot
Name: volsync-dest-database-destination-20210119221601

In the above example,

• Rclone Dest Path indicates the intermediary storage system from where data will be transferred to the desti-
nation site. In the above example, the intermediary storage system is an S3 bucket.

• No errors were detected (the Reconciled condition is True).

After at least one synchronization has taken place, the following will also be available:

• Last Sync Time contains the time of the last successful data synchronization.

• Latest Image references the object with the most recent copy of the data. If the copyMethod is Snapshot,
this will be a VolumeSnapshot object. If the copyMethod is Direct, this will be the PVC that is used as the
destination by VolSync.

2.3. Rclone-based replication 23

VolSync

Additional destination options

There are a number of more advanced configuration parameters that are supported for configuring the destination. All
of the following options would be placed within the .spec.rclone portion of the ReplicationDestination CustomRe-
source.

accessModes
When VolSync creates the destination volume, this specifies the accessModes for the PVC. The value should be
ReadWriteOnce or ReadWriteMany.

capacity
When VolSync creates the destination volume, this value is used to determine its size. This need not match the
size of the source volume, but it must be large enough to hold the incoming data.

copyMethod
This specifies how the data should be preserved at the end of each synchronization iteration. Valid values are:

• Direct - Do not create a point-in-time copy of the data.

• Snapshot - Create a VolumeSnapshot at the end of each iteration

destinationPVC
Instead of having VolSync automatically provision the destination volume (using capacity, accessModes, etc.),
the name of a pre-existing PVC may be specified here.

storageClassName
When VolSync creates the destination volume, this specifies the name of the StorageClass to use. If omitted, the
system default StorageClass will be used.

volumeSnapshotClassName
When using a copyMethod of Snapshot, this value specifies the name of the VolumeSnapshotClass to use when
creating a snapshot. If omitted, the system default VolumeSnapshotClass will be used.

rcloneConfigSection
This is used to identify the configuration section within rclone.conf to use.

rcloneDestPath
This is the remote storage location in which the persistent data will be downloaded. This should match the
rcloneDestPath used on the ReplicationSource.

rcloneConfig
This specifies the secret to be used. The secret contains an rclone.conf file with the configuration and creden-
tials for the object target.

For a concrete example, see the database synchronization example.

2.4 Restic-based backup

2.4.1 Restic Database Example

Restic backup

Restic is a fast and secure backup program. The following example will use Restic to create a backup of a source
volume.

A MySQL database will be used as the example application.

24 Chapter 2. Usage

https://restic.readthedocs.io/

VolSync

Creating source PVC to be backed up

Create a namespace called source, and deploy the source MySQL database.

$ kubectl create ns source
$ kubectl -n source create -f examples/source-database/

Verify the database is running:

$ kubectl -n source get pods,pvc,volumesnapshots

NAME READY STATUS RESTARTS AGE
pod/mysql-87f849f8c-n9j7j 1/1 Running 1 58m

NAME STATUS VOLUME ␣
→˓ CAPACITY ACCESS MODES STORAGECLASS AGE
persistentvolumeclaim/mysql-pv-claim Bound pvc-adbf57f1-6399-4738-87c9-
→˓4c660d982a0f 2Gi RWO csi-hostpath-sc 60m

Add a new database:

$ kubectl exec --stdin --tty -n source `kubectl get pods -n source | grep mysql | awk '
→˓{print $1}'` -- /bin/bash

$ mysql -u root -p$MYSQL_ROOT_PASSWORD

> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+
4 rows in set (0.00 sec)

> create database synced;
> exit

$ exit

Restic Repository Setup

For the purpose of this tutorial we are using minio as the object storage target for the backup.

Start minio:

$ hack/run-minio.sh

The restic-config Secret configures the Restic repository parameters:

2.4. Restic-based backup 25

VolSync

apiVersion: v1
kind: Secret
metadata:
name: restic-config

type: Opaque
stringData:
The repository url
RESTIC_REPOSITORY: s3:http://minio.minio.svc.cluster.local:9000/restic-repo
The repository encryption key
RESTIC_PASSWORD: my-secure-restic-password
ENV vars specific to the back end
https://restic.readthedocs.io/en/stable/030_preparing_a_new_repo.html
AWS_ACCESS_KEY_ID: access
AWS_SECRET_ACCESS_KEY: password

The above will backup to a bucket called restic-repo. If the same bucket will be used for different PVCs or different
uses, then make sure to specify a unique path under restic-repo. See Shared S3 Bucket Notes for more detail.

ReplicationSource

Start by configuring the source; a minimal example is shown below

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: database-source
namespace: source

spec:
sourcePVC: mysql-pv-claim
trigger:
schedule: "*/30 * * * *"

restic:
pruneIntervalDays: 15
repository: restic-config
retain:
hourly: 1
daily: 1
weekly: 1
monthly: 1
yearly: 1

copyMethod: Clone

In the above ReplicationSource object,

• The PiT copy of the source data mysql-pv-claim will be created by cloning the source volume.

• The synchronization schedule, .spec.trigger.schedule, is defined by a cronspec, making the schedule very
flexible. In this case, it will take a backup every 30 minutes.

• The restic repository configuration is provided via the restic-config Secret.

• pruneIntervalDays defines the interval between Restic prune operations.

26 Chapter 2. Usage

https://en.wikipedia.org/wiki/Cron#Overview

VolSync

• The retain settings determine how many backups should be saved in the repository. Read more about restic
forget.

Now, deploy the restic-config followed by ReplicationSource configuration.

$ kubectl create -f examples/restic/source-restic/source-restic.yaml -n source
$ kubectl create -f examples/restic/volsync_v1alpha1_replicationsource.yaml -n source

To verify the replication has completed, view the the ReplicationSource .status field.

$ kubectl -n source get ReplicationSource/database-source -oyaml

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: database-source
namespace: source

spec:
... lines omitted ...

status:
conditions:
- lastTransitionTime: "2021-05-17T18:16:35Z"
message: Reconcile complete
reason: ReconcileComplete
status: "True"
type: Reconciled

lastSyncDuration: 3m10.261673933s
lastSyncTime: "2021-05-17T18:19:45Z"
nextSyncTime: "2021-05-17T18:30:00Z"
restic: {}

In the above output, the lastSyncTime shows the time when the last backup completed.

The backup created by VolSync can be seen by directly accessing the Restic repository:

In one window, create a port forward to access the minio server
$ kubectl port-forward --namespace minio svc/minio 9000:9000

An another, access the repository w/ restic via the above forward
$ AWS_ACCESS_KEY_ID=access AWS_SECRET_ACCESS_KEY=password restic -r s3:http://127.0.0.
→˓1:9000/restic-repo snapshots
enter password for repository:
repository 03fd0c91 opened successfully, password is correct
created new cache in /home/jstrunk/.cache/restic
ID Time Host Tags Paths
--
caebaa8e 2021-05-17 14:19:42 volsync /data
--
1 snapshots

There is a snapshot in the restic repository created by the restic data mover.

2.4. Restic-based backup 27

https://restic.readthedocs.io/en/stable/060_forget.html?highlight=forget#removing-snapshots-according-to-a-policy
https://restic.readthedocs.io/en/stable/060_forget.html?highlight=forget#removing-snapshots-according-to-a-policy

VolSync

Restoring the backup

To restore from the backup, create a destination, deploy restic-config and ReplicationDestination on the
destination.

$ kubectl create ns dest
$ kubectl -n dest create -f examples/restic/source-restic/

To start the restore, create a empty PVC for the data:

$ kubectl -n dest create -f examples/source-database/mysql-pvc.yaml
persistentvolumeclaim/mysql-pv-claim created

Create the ReplicationDestination in the dest namespace to restore the data:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationDestination
metadata:
name: database-destination

spec:
trigger:
manual: restore

restic:
destinationPVC: mysql-pv-claim
repository: restic-config
copyMethod: Direct

$ kubectl -n dest create -f examples/restic/volsync_v1alpha1_replicationdestination.yaml

Once the restore is complete, the .status.lastManualSync field will match .spec.trigger.manual.

To verify restore, deploy the MySQL database to the dest namespace which will use the data that has been restored
from sourcePVC backup.

$ kubectl create -n dest -f examples/destination-database/

Validate that the mysql pod is running within the environment.

$ kubectl get pods -n dest
NAME READY STATUS RESTARTS AGE
mysql-8b9c5c8d8-v6tg6 1/1 Running 0 38m

Connect to the mysql pod and list the databases to verify the synced database exists.

$ kubectl exec --stdin --tty -n dest `kubectl get pods -n dest | grep mysql | awk '
→˓{print $1}'` -- /bin/bash
$ mysql -u root -p$MYSQL_ROOT_PASSWORD
> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |

(continues on next page)

28 Chapter 2. Usage

VolSync

(continued from previous page)

| synced |
| sys |
+--------------------+
5 rows in set (0.00 sec)

> exit
$ exit

2.4.2 Backing up multiple PVCs to the same S3 bucket

If using the same S3 bucket for multiple backups, then be aware of the following:

• Each PVC to be backed up will need its own separate restic-config secret.

• Each restic-config secret may use the same s3 bucket name in the RESTIC_REPOSITORY, but they must
each have a unique path underneath.

Example of backing up 2 PVCs, pvc-a and pvc-b:

A restic-config and replicationsource needs to be created for each pvc and each replicationsource must refer
to the correct restic-config.

For pvc-a:

Restic-config Secret for pvc-a
apiVersion: v1
kind: Secret
metadata:
name: restic-config-a

type: Opaque
stringData:
The repository url with pvc-a-backup as the subpath under the restic-repo bucket
RESTIC_REPOSITORY: s3:http://minio.minio.svc.cluster.local:9000/restic-repo/pvc-a-

→˓backup
The repository encryption key
RESTIC_PASSWORD: my-secure-restic-password-pvc-a
ENV vars specific to the back end
https://restic.readthedocs.io/en/stable/030_preparing_a_new_repo.html
AWS_ACCESS_KEY_ID: access
AWS_SECRET_ACCESS_KEY: password

ReplicationSource for pvc-a
apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: replication-source-pvc-a
namespace: source

spec:
sourcePVC: pvc-a
trigger:

(continues on next page)

2.4. Restic-based backup 29

VolSync

(continued from previous page)

schedule: "*/30 * * * *"
restic:
pruneIntervalDays: 15
repository: restic-config-a
retain:
hourly: 1
daily: 1
weekly: 1
monthly: 1
yearly: 1

copyMethod: Clone

For pvc-b:

Restic-config Secret for pvc-b
apiVersion: v1
kind: Secret
metadata:
name: restic-config-b

type: Opaque
stringData:
The repository url with pvc-b-backup as the subpath under the restic-repo bucket
RESTIC_REPOSITORY: s3:http://minio.minio.svc.cluster.local:9000/restic-repo/pvc-b-

→˓backup
The repository encryption key - using a different key from pvc-a. This will not␣

→˓prevent overwrites
or deletes of the data for others who have access to the bucket, but will prevent␣

→˓reads/writes
to the restic data in the pvc-b-backup folder for those without this encryption key.
RESTIC_PASSWORD: my-secure-restic-password-pvc-b
ENV vars specific to the back end
https://restic.readthedocs.io/en/stable/030_preparing_a_new_repo.html
AWS_ACCESS_KEY_ID: access
AWS_SECRET_ACCESS_KEY: password

ReplicationSource for pvc-b
apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: replication-source-pvc-b
namespace: source

spec:
sourcePVC: pvc-b
trigger:
schedule: "*/30 * * * *"

restic:
pruneIntervalDays: 15
repository: restic-config-a
retain:
hourly: 1

(continues on next page)

30 Chapter 2. Usage

VolSync

(continued from previous page)

daily: 1
weekly: 1
monthly: 1
yearly: 1

copyMethod: Clone

Contents

Backing up using Restic

• Specifying a repository
• Configuring backup

– Backup options
• Performing a restore

– Restore options
• Using a custom certificate authority

VolSync supports taking backups of PersistentVolume data using the Restic-based data mover. A ReplicationSource
defines the backup policy (target, frequency, and retention), while a ReplicationDestination is used for restores.

The Restic mover is different than most of VolSync’s other movers because it is not meant for synchronizing data
between clusters. This mover is specifically designed for data backup.

2.4.3 Specifying a repository

For both backup and restore operations, it is necessary to specify a backup repository for Restic. The repository and
connection information are defined in a restic-config Secret.

Below is an example showing how to use a repository stored on Minio.

apiVersion: v1
kind: Secret
metadata:
name: restic-config

type: Opaque
stringData:
The repository url
RESTIC_REPOSITORY: s3:http://minio.minio.svc.cluster.local:9000/restic-repo
The repository encryption key
RESTIC_PASSWORD: my-secure-restic-password
ENV vars specific to the chosen back end
https://restic.readthedocs.io/en/stable/030_preparing_a_new_repo.html
AWS_ACCESS_KEY_ID: access
AWS_SECRET_ACCESS_KEY: password

This Secret will be referenced for both backup (ReplicationSource) and for restore (ReplicationDestination). The key
names in this configuration Secret directly correspond to the environment variable names supported by Restic.

Note: When providing credentials for Google Cloud Storage, the GOOGLE_APPLICATION_CREDENTIALS key should
contain the actual contents of the json credential file, not just the path to the file.

2.4. Restic-based backup 31

VolSync

The path used in the RESTIC_REPOSITORY is the s3 bucket but can optionally contain a folder name within the bucket
as well. This can be useful if multiple PVCs are to be backed up to the same S3 bucket.

As an example one restic-config secret could use:

RESTIC_REPOSITORY: s3:http://minio.minio.svc.cluster.local:9000/restic-repo/pvc-1-backup

While another (saved in a separate restic-config secret) could use:

RESTIC_REPOSITORY: s3:http://minio.minio.svc.cluster.local:9000/restic-repo/pvc-2-backup

Note: If backing up multiple PVCs to the same S3 bucket, the path underneath the bucket must be unique for each
PVC. Each PVC will be backed up with a separate ReplicationSource, and each should use its own separate restic-config
secret

Note also by sharing the same s3 bucket this means write access to the s3 bucket will be granted to different replica-
tionsources.

Note: If necessary, the repository will be automatically initialized (i.e., restic init) during the first backup.

2.4.4 Configuring backup

A backup policy is defined by a ReplicationSource object that uses the Restic replication method.

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: mydata-backup

spec:
The PVC to be backed up
sourcePVC: mydata
trigger:
Take a backup every 30 minutes
schedule: "*/30 * * * *"

restic:
Prune the repository (repack to free space) every 2 weeks
pruneIntervalDays: 14
Name of the Secret with the connection information
repository: restic-config
Retention policy for backups
retain:
hourly: 6
daily: 5
weekly: 4
monthly: 2
yearly: 1

Clone the source volume prior to taking a backup to ensure a
point-in-time image.
copyMethod: Clone

(continues on next page)

32 Chapter 2. Usage

VolSync

(continued from previous page)

The StorageClass to use when creating the PiT copy (same as source PVC if omitted)
#storageClassName: my-sc-name
The VSC to use if the copy method is Snapshot (default if omitted)
#volumeSnapshotClassName: my-vsc-name

Backup options

There are a number of additional configuration options not shown in the above example. VolSync’s Restic mover
options closely follow those of Restic itself.

accessModes
When using a copyMethod of Clone or Snapshot, this field allows overriding the access modes for the point-in-
time (PiT) volume. The default is to use the access modes from the source PVC.

capacity
When using a copyMethod of Clone or Snapshot, this allows overriding the capacity of the PiT volume. The
default is to use the capacity of the source volume.

copyMethod
This specifies the method used to create a PiT copy of the source volume. Valid values are:

• Clone - Create a new volume by cloning the source PVC (i.e., use the source PVC as the volumeSource for
the new volume.

• Direct - Do no create a PiT copy. The VolSync data mover will directly use the source PVC.

• Snapshot - Create a VolumeSnapshot of the source PVC, then use that snapshot to create the new volume.
This option should be used for CSI drivers that support snapshots but not cloning.

storageClassName
This specifies the name of the StorageClass to use when creating the PiT volume. The default is to use the same
StorageClass as the source volume.

volumeSnapshotClassName
When using a copyMethod of Snapshot, this specifies the name of the VolumeSnapshotClass to use. If not
specified, the cluster default will be used.

cacheCapacity
This determines the size of the Restic metadata cache volume. This volume contains cached metadata from the
backup repository. It must be large enough to hold the non-pruned repository metadata. The default is 1 Gi.

cacheStorageClassName
This is the name of the StorageClass that should be used when provisioning the cache volume. It defaults to
.spec.storageClassName, then to the name of the StorageClass used by the source PVC.

cacheAccessModes
This is the access mode(s) that should be used to provision the cache volume. It defaults to .spec.accessModes,
then to the access modes used by the source PVC.

customCA
This option allows a custom certificate authority to be used when making TLS (https) connections to the remote
repository.

key
This is the name of the field within the Secret that holds the CA certificate

secretName
This is the name of a Secret containing the CA certificate

2.4. Restic-based backup 33

VolSync

pruneIntervalDays
This determines the number of days between running restic prune on the repository. The prune operation
repacks the data to free space, but it can also generate significant I/O traffic as a part of the process. Setting this
option allows a trade-off between storage consumption (from no longer referenced data) and access costs.

repository
This is the name of the Secret (in the same Namespace) that holds the connection information for the backup
repository. The repository path should be unique for each PV. Shared backup repositories are not currently
supported.

retain
This has sub-fields for hourly, daily, weekly, monthly, and yearly that allow setting the number of each
type of backup to retain. There is an additional field, within that can be used to specify a time period during
which all backups should be retained. See Restic’s documentation on –keep-within for more information.

When more than the specified number of backups are present in the repository, they will be removed via Restic’s
forget operation, and the space will be reclaimed during the next prune.

2.4.5 Performing a restore

Data from a backup can be restored using the ReplicationDestination CR. In most cases, it is desirable to perform a
single restore into an empty PersistentVolume.

For example, create a PVC to hold the restored data:

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: datavol

spec:
accessModes:
- ReadWriteOnce

resources:
requests:
storage: 3Gi

Restore the data into datavol:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationDestination
metadata:
name: datavol-dest

spec:
trigger:
manual: restore-once

restic:
repository: restic-repo
Use an existing PVC, don't provision a new one
destinationPVC: datavol
copyMethod: Direct

In the above example, the data will be written directly into the new PVC since it is specified via destinationPVC, and
no snapshot will be created since a copyMethod of Direct is used.

34 Chapter 2. Usage

https://restic.readthedocs.io/en/stable/060_forget.html#removing-snapshots-according-to-a-policy

VolSync

The restore operation only needs to be performed once, so instead of using a cronspec-based schedule, a manual trigger
is used. After the restore completes, the ReplicationDestination object can be deleted.

The example, shown above, will restore the data from the most recent backup. To restore an older version of the data,
the previous and restoreAsOf fields can be used. See below for more information on their meaning.

Restore options

There are a number of additional configuration options not shown in the above example.

accessModes
When VolSync creates the destination volume, this specifies the accessModes for the PVC. The value should be
ReadWriteOnce or ReadWriteMany.

capacity
When VolSync creates the destination volume, this value is used to determine its size. This need not match the
size of the source volume, but it must be large enough to hold the incoming data.

copyMethod
This specifies how the data should be preserved at the end of each synchronization iteration. Valid values are:

• Direct - Do not create a point-in-time copy of the data.

• Snapshot - Create a VolumeSnapshot at the end of each iteration

destinationPVC
Instead of having VolSync automatically provision the destination volume (using capacity, accessModes, etc.),
the name of a pre-existing PVC may be specified here.

storageClassName
When VolSync creates the destination volume, this specifies the name of the StorageClass to use. If omitted, the
system default StorageClass will be used.

volumeSnapshotClassName
When using a copyMethod of Snapshot, this value specifies the name of the VolumeSnapshotClass to use when
creating a snapshot. If omitted, the system default VolumeSnapshotClass will be used.

cacheCapacity
This determines the size of the Restic metadata cache volume. This volume contains cached metadata from the
backup repository. It must be large enough to hold the non-pruned repository metadata. The default is 1 Gi.

cacheStorageClassName
This is the name of the StorageClass that should be used when provisioning the cache volume. It defaults to
.spec.storageClassName, then to the name of the StorageClass used by the source PVC.

cacheAccessModes
This is the access mode(s) that should be used to provision the cache volume. It defaults to .spec.accessModes,
then to the access modes used by the source PVC.

customCA
This option allows a custom certificate authority to be used when making TLS (https) connections to the remote
repository.

key
This is the name of the field within the Secret that holds the CA certificate

secretName
This is the name of a Secret containing the CA certificate

previous
Non-negative integer which specifies an offset for how many snapshots ago we want to restore from. When

2.4. Restic-based backup 35

VolSync

restoreAsOf is provided, the behavior is the same, however the starting snapshot considered will be the first
one taken before restoreAsOf.

repository
This is the name of the Secret (in the same Namespace) that holds the connection information for the backup
repository. The repository path should be unique for each PV.

restoreAsOf
An RFC-3339 timestamp which specifies an upper-limit on the snapshots that we should be looking through
when preparing to restore. Snapshots made after this timestamp will not be considered. Note: though this is
an RFC-3339 timestamp, Kubernetes will only accept ones with the day and hour fields separated by a T. E.g,
2022-08-10T20:01:03-04:00 will work but 2022-08-10 20:01:03-04:00 will fail.

2.4.6 Using a custom certificate authority

Normally, Restic will use a default set of certificates to verify the validity of remote repositories when making https
connections. However, users that deploy with a self-signed certificate will need to provide their CA’s certificate via the
customCA option.

The custom CA certificate needs to be provided in a Secret to VolSync. For example, if the CA certificate is a file in
the current directory named ca.crt, it can be loaded as a Secret:

$ kubectl create secret generic tls-secret --from-file=ca.crt=./ca.crt
secret/tls-secret created

$ kubectl describe secret/tls-secret
Name: tls-secret
Namespace: default
Labels: <none>
Annotations: <none>

Type: Opaque

Data
====
ca.crt: 1127 bytes

This Secret would then be used in the ReplicationSource and/or ReplicationDestination objects:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: mydata-backup-with-customca

spec:
... fields omitted ...
restic:
... other fields omitted ...
customCA:
secretName: tls-secret
key: ca.crt

36 Chapter 2. Usage

VolSync

2.5 Rsync-based replication

2.5.1 Rsync Database Example

The following example will use the Rsync replication method to periodically replicate a MySQL database.

First, create the destination Namespace and deploy the ReplicationDestination object.

$ kubectl create ns dest
$ kubectl create -n dest -f dest.yaml

The ReplicationDestination has the following configuration:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationDestination
metadata:
name: database-destination

spec:
rsync:
serviceType: LoadBalancer
copyMethod: Snapshot
capacity: 2Gi
accessModes: [ReadWriteOnce]
storageClassName: standard-csi
volumeSnapshotClassName: csi-gce-pd-vsc

A LoadBalancer Service is created by VolSync which will be used by the ReplicationSource to connect to the desti-
nation. Record the service IP address as it will be used in the ReplicationSource configuration. (More information on
LoadBalancer vs ClusterIP)

$ kubectl get replicationdestination database-destination -n dest --template={{.status.
→˓rsync.address}}
34.133.219.189

Now it is time to deploy our database.

$ kubectl create ns source
$ kubectl create -n source -f examples/source-database

Verify the database is running.

$ kubectl get pods -n source
NAME READY STATUS RESTARTS AGE
mysql-8b9c5c8d8-24w6g 1/1 Running 0 17s

Now create the ReplicationSource items. First, we need the ssh secret from the destination namespace. (SSH Secret
copying details)

Retrieve the Secret from the destination cluster
$ kubectl get secret -n dest volsync-rsync-dest-src-database-destination -o yaml > /tmp/
→˓secret.yaml

Remove unnecessary fields
(continues on next page)

2.5. Rsync-based replication 37

VolSync

(continued from previous page)

$ vi /tmp/secret.yaml
^^^ change the namespace to "source"
^^^ remove the owner reference (.metadata.ownerReferences)

Insert the Secret into the source cluster
$ kubectl create -f /tmp/secret.yaml

Using the IP address that relates to the ReplicationDestination that was recorded earlier. Create a ReplicationSource
object:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: database-source
namespace: source

spec:
sourcePVC: mysql-pv-claim
trigger:
Replicate every 5 minutes
schedule: "*/5 * * * *"

rsync:
The name of the Secret we just created
sshKeys: volsync-rsync-dest-src-database-destination
The LoadBalancer address from the ReplicationDestination
address: 34.133.219.189
copyMethod: Clone

Note: You may need to change the copyMethod to Snapshot and specify both a storageClassName and
volumeSnapshotClassName, depending on your CSI driver’s capabilities.

Once the ReplicationSource is created, the initial synchronization should begin. To verify the replication has completed
describe the Replication source.

$ kubectl describe ReplicationSource -n source database-source

From the output, the success of the replication can be seen by the following lines:

Status:
Conditions:
Last Transition Time: 2020-12-03T16:07:35Z
Message: Reconcile complete
Reason: ReconcileComplete
Status: True
Type: Reconciled

Last Sync Duration: 4.511334577s
Last Sync Time: 2020-12-03T16:09:04Z
Next Sync Time: 2020-12-03T16:10:00Z

We will modify the source database by creating an additional database in the mysql pod running in the source names-
pace.

38 Chapter 2. Usage

VolSync

$ kubectl exec --stdin --tty -n source `kubectl get pods -n source | grep mysql | awk '
→˓{print $1}'` -- /bin/bash
$ mysql -u root -p$MYSQL_ROOT_PASSWORD
> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
| sys |
+--------------------+
4 rows in set (0.00 sec)

> create database synced;
> exit
$ exit

During the next synchronization iteration, these updates will be replicated to the destination.

Now the mysql database will be deployed to the destination namespace which will use the data that has been replicated.

First we need to identify the latest snapshot from the ReplicationDestination object. Record the values of the latest
snapshot as it will be used to create a pvc. Then create the Deployment, Service, PVC, and Secret. Ensure that the
above steps are completed before a new replication cycle starts or the latest snapshot may be replaced before it can be
used.

$ kubectl get replicationdestination database-destination -n dest --template={{.status.
→˓latestImage.name}}
volsync-dest-database-destination-20201203174504

$ sed -i 's/snapshotToReplace/volsync-dest-database-destination-20201203174504/g'␣
→˓examples/destination-database/mysql-pvc.yaml
$ kubectl create -n dest -f examples/destination-database/

Validate that the mysql pod is running within the environment.

$ kubectl get pods -n dest
NAME READY STATUS RESTARTS AGE
mysql-8b9c5c8d8-v6tg6 1/1 Running 0 38m

Connect to the mysql pod and list the databases to verify the synced database exists.

$ kubectl exec --stdin --tty -n dest `kubectl get pods -n dest | grep mysql | awk '
→˓{print $1}'` -- /bin/bash
$ mysql -u root -p$MYSQL_ROOT_PASSWORD
> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |

(continues on next page)

2.5. Rsync-based replication 39

VolSync

(continued from previous page)

| synced |
| sys |
+--------------------+
5 rows in set (0.00 sec)

2.5.2 Moving data into Kubernetes w/ Rsync

While VolSync is typically used to replicate data between Kubernetes clusters, it is sometimes necessary to replicate
data into a cluster from outside. For example, when containerizing a previously standalone workload, that application’s
data needs to be moved into the cluster and onto a PVC.

In this configuration, VolSync manages the destination (via a ReplicationDestination object), but instead of having a
VolSync ReplicationSource as the sender, it will be an external program that plays that role. It will transmit the data to
the destination by initiating the Rsync over SSH connection directly.

The VolSync CLI incorporates this functionality via its migration set of sub-commands. For more information and
a walk-through of how to perform synchronization of data into a Kubernetes PVC, please see:

• CLI/kubectl plugin installation

• VolSync migration command

2.5.3 Manual SSH key generation

Normally, VolSync generates SSH keys upon the deployment of a ReplicationDestination object but SSH keys can also
be provided to VolSync rather than generating new ones. The steps below will describe the process to provide VolSync
SSH keys.

Generating keys

ssh-keygen can be used to generate SSH keys. The keys that are created will be used to create secrets which will be
used by VolSync.

Two key pairs need to be generated. The first SSH key will called destination.

$ ssh-keygen -t rsa -b 4096 -f destination -C "" -N ""
Generating public/private rsa key pair.
Your identification has been saved in destination
Your public key has been saved in destination.pub
The key fingerprint is:
SHA256:5gRLpIdeu+3CbkScH7qIsEw6tMNPRdVFUe82ihWw5BU
The key's randomart image is:
+---[RSA 4096]----+
| ... o*oE. |
| +. .o + . |
| oo=. o . . |
| ..+++. o |
| .oooS. . + |
|.o . o*. o o .|
|*o.o +..o . . |
|+=o . =. |

(continues on next page)

40 Chapter 2. Usage

VolSync

(continued from previous page)

| .o. o... |
+----[SHA256]-----+

The second SSH key will be called source:

$ ssh-keygen -t rsa -b 4096 -f source -C "" -N ""
Generating public/private rsa key pair.
Your identification has been saved in source
Your public key has been saved in source.pub
The key fingerprint is:
SHA256:NEQNMNsgR43Y3c2dWMyit70JagmbCLNRfakWhWORENU
The key's randomart image is:
+---[RSA 4096]----+
| .+OX*O o *.. |
| .oo*B E = = |
| .o+o o . |
| ..o.+ . |
| . S+ . o |
| + + o . |
| = o + o . o |
| . . o + o |
| . |
+----[SHA256]-----+

Creating secrets

Secrets will be created using the SSH keys that were generated above. These keys must reside on the cluster and
namespace that serves as the replication source/destination.

The destination needs access to the public and private destination keys but only the public source key:

$ kubectl create ns dest
$ kubectl create secret generic volsync-rsync-dest-dest-database-destination --from-
→˓file=destination=destination --from-file=source.pub=source.pub --from-file=destination.
→˓pub=destination.pub -n dest

The source needs access to the public and private source keys but only the public destination key:

$ kubectl create ns source
$ kubectl create secret generic volsync-rsync-dest-src-database-destination --from-
→˓file=source=source --from-file=source.pub=source.pub --from-file=destination.
→˓pub=destination.pub -n source

2.5. Rsync-based replication 41

VolSync

Replication destination configuration

The last step to use these keys is to provide the value of sshKeys to the ReplicationDestination object as a field. Since
the name of a key Secret is being provided in .spec.rsync.sshKeys, the operator will use this Secret instead of
generating its own and placing it in the .status.

apiVersion: volsync.backube/v1alpha1
kind: ReplicationDestination
metadata:
name: database-destination
namespace: dest

spec:
rsync:
... other fields omitted ...
This is the name of the Secret we created, above
sshKeys: volsync-rsync-dest-dest-database-destination

The ReplicationDestination object can now be created:

$ kubectl create -f examples/rsync/volsync_v1alpha1_replicationdestination.yaml

The above steps should be repeated to set the sshKeys field in the ReplicationSource.

Contents

Rsync-based replication

• Destination configuration
– Destination status
– Additional destination options

• Source configuration
– Source status
– Additional source options

• Rsync-specific considerations
– Copying the SSH key secret
– Choosing between Service types (ClusterIP vs LoadBalancer)

Rsync-based replication supports 1:1 asynchronous replication of volumes for use cases such as:

• Disaster recovery

• Mirroring to a test environment

• Sending data to a remote site for processing

With this method, VolSync synchronizes data from a ReplicationSource to a ReplicationDestination using Rsync across
an ssh connection. By using Rsync, the amount of data transferred during each synchronization is kept to a minimum,
and the ssh connection ensures that the data transfer is both authenticated and secure.

The Rsync method is typically configured to use a “push” model for the data replication. A schedule or other trigger is
used on the source side of the relationship to trigger each replication iteration.

During each iteration, (optionally) a point-in-time (PiT) copy of the source volume is created and used as the source
data. The VolSync Rsync data mover then connects to the destination using ssh (exposed via a Service) and sends

42 Chapter 2. Usage

https://rsync.samba.org/

VolSync

any updates. At the conclusion of the transfer, the destination (optionally) creates a VolumeSnapshot to preserve the
updated data.

VolSync is configured via two CustomResources (CRs), one on the source side and one on the destination side of the
replication relationship.

2.5.4 Destination configuration

Start by configuring the destination; an example is shown below:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationDestination
metadata:
name: myDest
namespace: myns

spec:
rsync:
copyMethod: Snapshot
capacity: 10Gi
accessModes: ["ReadWriteOnce"]
storageClassName: my-sc
volumeSnapshotClassName: my-vsc

In the above example, a 10 GiB RWO volume will be provisioned using the StorageClass my-sc to serve as the desti-
nation for replicated data. This volume is used by the rsync data mover to receive the incoming data transfers.

Since the copyMethod specified above is Snapshot, a VolumeSnapshot will be created, using the VolumeSnapshot-
Class named my-vsc, at the end of each synchronization interval. It is this snapshot that would be used to gain access
to the replicated data. The name of the current VolumeSnapshot holding the latest synced data will be placed in the
ReplicationDestination’s .status.latestImage.

Destination status

VolSync provides status information on the state of the replication via the .status field in the ReplicationDestination
object:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationDestination
metadata:
name: myDest
namespace: myns

spec:
rsync:
... omitted ...

status:
conditions:
- lastTransitionTime: "2021-01-14T19:43:07Z"
message: Reconcile complete
reason: ReconcileComplete
status: "True"
type: Reconciled

(continues on next page)

2.5. Rsync-based replication 43

VolSync

(continued from previous page)

lastSyncDuration: 31.333710313s
lastSyncTime: "2021-01-14T19:43:07Z"
latestImage:
apiGroup: snapshot.storage.k8s.io
kind: VolumeSnapshot
name: volsync-dest-test-20210114194305

rsync:
address: 10.99.236.225
sshKeys: volsync-rsync-dest-src-test

In the above example,

• No errors were detected (the Reconciled condition is True)

• The destination ssh server is available at the IP specified in .status.rsync.address. This should be used
when configuring the corresponding ReplicationSource.

• The ssh keys for the source to use are available in the Secret .status.rsync.sshKeys. This Secret will need
to be copied to the source so that it can authenticate.

After at least one synchronization has taken place, the following will also be available:

• lastSyncTime contains the time of the last successful data synchronization.

• latestImage references the object with the most recent copy of the data. If the copyMethod is Snapshot, this
will be a VolumeSnapshot object. If the copyMethod is Direct, this will be the PVC that is used as the destination
by VolSync.

Additional destination options

There are a number of more advanced configuration parameters that are supported for configuring the destination. All of
the following options would be placed within the .spec.rsync portion of the ReplicationDestination CustomResource.

accessModes
When VolSync creates the destination volume, this specifies the accessModes for the PVC. The value should be
ReadWriteOnce or ReadWriteMany.

capacity
When VolSync creates the destination volume, this value is used to determine its size. This need not match the
size of the source volume, but it must be large enough to hold the incoming data.

copyMethod
This specifies how the data should be preserved at the end of each synchronization iteration. Valid values are:

• Direct - Do not create a point-in-time copy of the data.

• Snapshot - Create a VolumeSnapshot at the end of each iteration

destinationPVC
Instead of having VolSync automatically provision the destination volume (using capacity, accessModes, etc.),
the name of a pre-existing PVC may be specified here.

storageClassName
When VolSync creates the destination volume, this specifies the name of the StorageClass to use. If omitted, the
system default StorageClass will be used.

volumeSnapshotClassName
When using a copyMethod of Snapshot, this value specifies the name of the VolumeSnapshotClass to use when
creating a snapshot. If omitted, the system default VolumeSnapshotClass will be used.

44 Chapter 2. Usage

VolSync

sshKeys
This is the name of a Secret that contains the ssh keys for authenticating the connection with the source. If not
provided, the destination keys will be automatically generated and corresponding source keys will be placed in a
new Secret. The name of that new Secret will be placed in .status.rsync.sshKeys.

serviceType
VolSync creates a Service to allow the source to connect to the destination. This field determines the type of that
Service. Allowed values are ClusterIP or LoadBalancer. The default is ClusterIP.

port
This determines the TCP port number that is used to connect via ssh. The default is 22.

2.5.5 Source configuration

An example source configuration is shown here:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: mySource
namespace: source

spec:
sourcePVC: mysql-pv-claim
trigger:
schedule: "*/5 * * * *"

rsync:
sshKeys: volsync-rsync-dest-src-database-destination
address: my.host.com
copyMethod: Clone

In the above example, the PVC named mysql-pv-claim will be replicated every 5 minutes using the Rsync replication
method. At the start of each iteration, a clone of the source PVC will be created to generate a point-in-time copy for
the iteration. The source will then use the ssh keys in the named Secret (.spec.rsync.sshKeys) to authenticate to
the destination. The connection will be made to the address specified in .spec.rsync.address.

The synchronization schedule, .spec.trigger.schedule, is defined by a cronspec, making the schedule very flexi-
ble. Both intervals (shown above) as well as specific times and/or days can be specified.

When configuring the source, the user must manually create the Secret referenced in .spec.rsync.sshKeys by copy-
ing the contents from the Secret generated previously on the destination (and made available in the destination’s .
status.rsync.sshKeys).

Additionally, this ReplicationSource specifies a copyMethod of Clone which will directly generate a point-in-time
copy of the source volume. However, not all CSI drivers support volume cloning (most notably the ebs-csi driver).
In such cases, the copyMethod: Snapshot can be used to indirectly create a copy of the volume by first taking a
snapshot, then restoring it. In this case, the user should also provide the volumeSnapshotClassName: <vsc-name>
option to indicate which VolumeSnapshotClass VolSync should use when creating the temporary snapshot.

2.5. Rsync-based replication 45

https://en.wikipedia.org/wiki/Cron#Overview

VolSync

Source status

The state of the replication from the source’s point of view is available in the .status field of the ReplicationSource:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: mySource
namespace: source

spec:
sourcePVC: mysql-pv-claim
trigger:
schedule: "*/5 * * * *"

rsync:
... omitted ...

status:
conditions:
- lastTransitionTime: "2021-01-14T19:42:38Z"
message: Reconcile complete
reason: ReconcileComplete
status: "True"
type: Reconciled

lastSyncDuration: 7.774288635s
lastSyncTime: "2021-01-14T20:10:07Z"
nextSyncTime: "2021-01-14T20:15:00Z"
rsync: {}

In the above example,

• No errors were detected (the Reconciled condition is True).

• The last synchronization was completed at .status.lastSyncTime and took .status.lastSyncDuration
seconds.

• The next scheduled synchronization is at .status.nextSyncTime.

Note: The length of time required to synchronize the data is determined by the rate of change for data in the volume
and the bandwidth between the source and destination. In order to avoid missed intervals, ensure there is sufficient
bandwidth between the source and destination such that lastSyncTime remains safely below the synchronization
interval (.spec.trigger.schedule).

Additional source options

There are a number of more advanced configuration parameters that are supported for configuring the source. All of
the following options would be placed within the .spec.rsync portion of the ReplicationSource CustomResource.

accessModes
When using a copyMethod of Clone or Snapshot, this field allows overriding the access modes for the point-in-
time (PiT) volume. The default is to use the access modes from the source PVC.

capacity
When using a copyMethod of Clone or Snapshot, this allows overriding the capacity of the PiT volume. The
default is to use the capacity of the source volume.

46 Chapter 2. Usage

VolSync

copyMethod
This specifies the method used to create a PiT copy of the source volume. Valid values are:

• Clone - Create a new volume by cloning the source PVC (i.e., use the source PVC as the volumeSource for
the new volume.

• Direct - Do no create a PiT copy. The VolSync data mover will directly use the source PVC.

• Snapshot - Create a VolumeSnapshot of the source PVC, then use that snapshot to create the new volume.
This option should be used for CSI drivers that support snapshots but not cloning.

storageClassName
This specifies the name of the StorageClass to use when creating the PiT volume. The default is to use the same
StorageClass as the source volume.

volumeSnapshotClassName
When using a copyMethod of Snapshot, this specifies the name of the VolumeSnapshotClass to use. If not
specified, the cluster default will be used.

address
This specifies the address of the replication destination’s ssh server. It can be taken directly from the Replica-
tionDestination’s .status.rsync.address field.

sshKeys
This is the name of a Secret that contains the ssh keys for authenticating the connection with the destination. If
not provided, the source keys will be automatically generated and corresponding destination keys will be placed
in a new Secret. The name of that new Secret will be placed in .status.rsync.sshKeys.

path
This determines the path within the destination volume where the data should be written. In order to create a
replica of the source volume, this should be left as the default of /.

port
This determines the TCP port number that is used to connect via ssh. The default is 22.

sshUser
This is the username to use when connecting to the destination. The default value is “root”.

For a concrete example, see the database synchronization example.

2.5.6 Rsync-specific considerations

This section explains some additional considerations when setting up rsync-based replication.

Copying the SSH key secret

When setting up the replication, it is necessary for the ReplicationSource to have a copy of the SSH keys so that it can
connect to the network endpoint created by the ReplicationDestination. While these keys can be generated manually,
the recommended method is to allow VolSync to generate the keys when setting up the ReplicationDestination. The
resulting Secret should then be copied to the source cluster.

Below is an example of a ReplicationDestination object. The VolSync operator has generated the SSH keys that should
be used in the source, and it has provided the name of the Secret containing them in the .status.rsync.sshKeys
field:

2.5. Rsync-based replication 47

VolSync

Listing 5: ReplicationDestination with SSH key Secret highlighted

apiVersion: volsync.backube/v1alpha1
kind: ReplicationDestination
metadata:
creationTimestamp: "2022-02-17T13:56:16Z"
generation: 1
name: database-destination
namespace: dest
resourceVersion: "2307"
uid: 71f0512b-8a6b-438c-9b9a-0dd2c0f4e7b8

spec:
rsync:
accessModes:
- ReadWriteOnce
capacity: 2Gi
copyMethod: Snapshot
serviceType: ClusterIP

status:
conditions:
- lastTransitionTime: "2022-02-17T13:56:30Z"
message: Reconcile complete
reason: ReconcileComplete
status: "True"
type: Reconciled

lastSyncStartTime: "2022-02-17T13:56:16Z"
rsync:
address: 10.96.150.107
sshKeys: volsync-rsync-dst-src-database-destination

This Secret exists in the same Namespace as the associated Replicationdestination. It has the following contents:

Listing 6: Secret as created by VolSync

apiVersion: v1
data:
destination.pub: c3NoL...
source: LS0tL...
source.pub: c3NoLX...

kind: Secret
metadata:
creationTimestamp: "2022-02-17T13:56:30Z"
name: volsync-rsync-dst-src-database-destination
namespace: dest
ownerReferences:
- apiVersion: volsync.backube/v1alpha1
blockOwnerDeletion: true
controller: true
kind: ReplicationDestination
name: database-destination
uid: 71f0512b-8a6b-438c-9b9a-0dd2c0f4e7b8

resourceVersion: "2296"
uid: 61ab5402-318f-46df-b36f-cd209f3d1455

(continues on next page)

48 Chapter 2. Usage

VolSync

(continued from previous page)

type: Opaque

The above Secret contains 3 fields: the source’s public, the source’s private, and the destination’s public keys.

This Secret must be copied to the source cluster, into the same Namespace where the source PVC and ReplicationSource
will reside. That can be accomplished as follows:

$ kubectl -n dest get secret volsync-rsync-dst-src-database-destination -oyaml > secret.
→˓yaml

Once saved to the local file, prepare it for the new cluster/namespace by removing the following fields from the
metadata area:

• creationTimestamp

• namespace

• ownerReferences

• resourceVersion

• uid

After removing the above fields, the Secret is as follows:

Listing 7: Prepared secret.yaml

apiVersion: v1
data:
destination.pub: c3NoL...
source: LS0tL...
source.pub: c3NoLX...

kind: Secret
metadata:
name: volsync-rsync-dst-src-database-destination

type: Opaque

Assuming the source objects will be in Namespace source, this Secret can be added to the source cluster via:

$ kubectl -n source create -f secret.yaml
secret/volsync-rsync-dst-src-database-destination created

This Secret should then be referenced when creating the corresponding ReplicationSource. For example:

Listing 8: ReplicationSource showing reference to SSH key Secret

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: database-source
namespace: source

spec:
sourcePVC: mysql-pv-claim
trigger:
schedule: "*/10 * * * *"

rsync:
sshKeys: volsync-rsync-dest-src-database-destination

(continues on next page)

2.5. Rsync-based replication 49

VolSync

(continued from previous page)

address: my.host.com
copyMethod: Clone

Choosing between Service types (ClusterIP vs LoadBalancer)

When using Rsync-based replication, the ReplicationSource needs to be able to make a network connection to the
ReplicationDestination. This requires network connectivity from the source to the destination cluster.

When a ReplicationDestination object is created, VolSync creates a corresponding Service object to serve as the network
endpoint. The type of Service (LoadBalancer or ClusterIP) should be specified in the ReplicationDestination’s .spec.
rsync.serviceType field.

Listing 9: ReplicationDestination with service type highlighted

apiVersion: volsync.backube/v1alpha1
kind: ReplicationDestination
metadata:
name: database-destination
namespace: dest

spec:
rsync:
accessModes:
- ReadWriteOnce
capacity: 2Gi
copyMethod: Snapshot
serviceType: ClusterIP

The clusters’ networking configuration between the two clusters affects the proper choice of Service type.

If ClusterIP is specified, the Service will receive an IP address allocated from the “cluster network” address pool. By
default, this collection of addresses are not accessible from outside the cluster, making it a poor choice for cross-cluster
replication. However, various networking addons such as Submariner bridge the cluster networks, making this a good
option.

If LoadBalancer is specified, an externally accessible IP address will be allocated. This requires cluster support
for load balancers such as those provided by the various cloud providers or MetalLB in the case of physical clusters.
While this is the easiest method for allocating an accessible address in cloud environments, load balancers tend to incur
additional costs and be limited in number.

To summarize the above trade-offs, when running on one of the public clouds, using a LoadBalancer is a quick way
to get started and will work for replicating small numbers of volumes. If replicating a large number of volumes, an
overlay network solution such as Submariner in combination with ClusterIP addresses will likely be more scalable.

2.6 Syncthing-based replication

2.6.1 Syncthing Dokuwiki Example

Note: This tutorial requires the usage of LoadBalancer to expose applications from within the cluster. If you are
running a KIND cluster, please follow this guide to install metallb if you haven’t already: https://kind.sigs.k8s.io/docs/
user/loadbalancer/

50 Chapter 2. Usage

https://submariner.io/
https://metallb.universe.tf/
https://kind.sigs.k8s.io/docs/user/loadbalancer/
https://kind.sigs.k8s.io/docs/user/loadbalancer/

VolSync

In this example, we will demonstrate how Syncthing can be used to maintain a synchronized volume across several
Dokuwiki application instances.

First, create a namespace for the Dokuwiki application and launch the required resources:

kubectl create ns dokuwiki-east
kubectl apply -f examples/dokuwiki/ -n dokuwiki-east

Ensure that we can access the dokuwiki application by obtaining the external IP address:

$ kubectl get service -n dokuwiki-east dokuwiki-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
dokuwiki-service LoadBalancer 10.96.231.229 172.18.255.200 5196:30113/TCP 16m

Open your browser and navigate to the value in your EXTERNAL-IP field, in our case it is 172.18.255.200:5196.
This should take you to the front-end for the Dokuwiki application. You’ll be able to create new wiki pages here, as
well as edit existing ones.

Once opened, you should see a page like this:

Now let’s populate our DokuWiki with its first page, and what better subject to talk about then the Syncthing data
mover?

Create a new page on the DokuWiki website with the following contents:

Syncthing is a data mover that allows you to synchronize your data across multiple␣
→˓devices.
It's an awesome tool that you should try out if you haven't already.

Now let’s create a Syncthing-based ReplicationSource to synchronize the data within our DokuWiki PVC:

2.6. Syncthing-based replication 51

VolSync

$ kubectl apply -f examples/syncthing/replicationsource_empty.yaml -n dokuwiki-east
replicationsource.volsync.backube/sync-dokuwiki created

Let’s retrieve our ReplicationSource’s Syncthing information once it becomes available:

$ kubectl get replicationsource -n dokuwiki-east sync-dokuwiki \
-o jsonpath='{.status.syncthing}' -w

{"ID":"TMBYRB4-EIINYAW-ZFBX4LV-7FE37NT-BLQPSKB-P2BFIPW-QW6ST3C-PSU7UQD","address":"tcp://
→˓10.96.217.239:22000"}

Once the above data becomes available, let’s save the Syncthing ID and address as an environment variable in our shell
so that we can reuse it later.

export SYNCTHING_EAST_ID=$(kubectl get replicationsource -n dokuwiki-east sync-dokuwiki -
→˓o jsonpath='{.status.syncthing.ID}')
export SYNCTHING_EAST_ADDRESS=$(kubectl get replicationsource -n dokuwiki-east sync-
→˓dokuwiki -o jsonpath='{.status.syncthing.address}')

Now that dokuwiki-east is all configured, let’s create two other namespaces with their own DokuWiki applications:
dokuwiki-west and dokuwiki-central.

kubectl create ns dokuwiki-west
kubectl create ns dokuwiki-central

We’ll launch a DokuWiki application in each namespace:

kubectl apply -f examples/dokuwiki/ -n dokuwiki-west
kubectl apply -f examples/dokuwiki/ -n dokuwiki-central

These can now be accessed through their own respective external IP addresses:

Listing 10: Obtaining the External IP for dokuwiki-west

$ kubectl get service -n dokuwiki-west dokuwiki-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
dokuwiki-service LoadBalancer 10.96.142.135 172.18.255.202 5196:32364/TCP 114s

Listing 11: Obtaining the External IP for dokuwiki-central

$ kubectl get service -n dokuwiki-central dokuwiki-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
dokuwiki-service LoadBalancer 10.96.254.251 172.18.255.203 5196:31687/TCP 2m32s

Go ahead and open both of these up in their own respective tabs. You should see empty pages for both dokuwiki-west
and dokuwiki-central.

Let’s change this by creating Syncthing-based ReplicationSources in each of these namespaces, and configuring them
to use dokuwiki-east as their introducer node.

Using the information that we obtained from the ReplicationSource in dokuwiki-east earlier, create a Replication-
Source with the following contents and apply it in each namespace:

52 Chapter 2. Usage

VolSync

Listing 12: Syncthing-based ReplicationSource using dokuwiki-east
as an introducer

for ns in dokuwiki-west dokuwiki-central; do
cat <<EOF | kubectl apply -n "${ns}" -f -
kind: ReplicationSource
apiVersion: volsync.backube/v1alpha1
metadata:
name: sync-dokuwiki

spec:
sourcePVC: dokuwiki-pvc
syncthing:
serviceType: ClusterIP
peers:
- ID: ${SYNCTHING_EAST_ID}
address: ${SYNCTHING_EAST_ADDRESS}
introducer: true

EOF
done

This will create Syncthing-based ReplicationSources in both namespaces configured to sync the PVC which stores
DokuWiki’s data. These ReplicationSources will be configured to use dokuwiki-east as their introducer node.

To complete the process, we must add dokuwiki-west and dokuwiki-central as peers into the dokuwiki-east
ReplicationSource. Since both dokuwiki-west and dokuwiki-central are now configured to use dokuwiki-east
as their introducer node, we will not have to do any extra work to get these two connected with each other.

First, let’s save the Syncthing information of dokuwiki-west and dokuwiki-central: Wait until the Syncthing
information is available in dokuwiki-west, then save it into the respective variables:

$ kubectl get replicationsource -n dokuwiki-west sync-dokuwiki -o jsonpath='{.status.
→˓syncthing}' -w
$ export SYNCTHING_WEST_ID=$(kubectl get replicationsource -n dokuwiki-west sync-
→˓dokuwiki -o jsonpath='{.status.syncthing.ID}')
$ export SYNCTHING_WEST_ADDRESS=$(kubectl get replicationsource -n dokuwiki-west sync-
→˓dokuwiki -o jsonpath='{.status.syncthing.address}')

Now repeat the same process for dokuwiki-central:

$ kubectl get replicationsource -n dokuwiki-central sync-dokuwiki -o jsonpath='{.status.
→˓syncthing}' -w
$ export SYNCTHING_CENTRAL_ID=$(kubectl get replicationsource -n dokuwiki-central sync-
→˓dokuwiki -o jsonpath='{.status.syncthing.ID}')
$ export SYNCTHING_CENTRAL_ADDRESS=$(kubectl get replicationsource -n dokuwiki-central␣
→˓sync-dokuwiki -o jsonpath='{.status.syncthing.address}')

Now that we have the Syncthing information of both namespaces, let’s add them as peers to the dokuwiki-east
ReplicationSource:

cat <<EOF | kubectl apply -n dokuwiki-east -f -
kind: ReplicationSource
apiVersion: volsync.backube/v1alpha1
metadata:
name: sync-dokuwiki

(continues on next page)

2.6. Syncthing-based replication 53

VolSync

(continued from previous page)

spec:
sourcePVC: dokuwiki-pvc
syncthing:
serviceType: ClusterIP
peers:
- ID: $SYNCTHING_CENTRAL_ID
address: $SYNCTHING_CENTRAL_ADDRESS
introducer: false

- ID: $SYNCTHING_WEST_ID
address: $SYNCTHING_WEST_ADDRESS
introducer: false

EOF

Once this configures, we’ll see that dokuwiki-east is now connected to both dokuwiki-west and
dokuwiki-central:

Listing 13: Peers connected to dokuwiki-east

$ kubectl get replicationsource sync-dokuwiki -n dokuwiki-east -o jsonpath='{.status.
→˓syncthing.peers}' | jq
[
{
"ID": "LMZRG5Y-TPMJ3EW-HJ4C7EQ-IK2JPCY-YHXDWLW-T7G3XIX-VCKB4F6-EQ5X2QI",
"address": "tcp://10.96.246.238:22000",
"connected": true,
"deviceName": "volsync-sync-dokuwiki-f59cd4b9c-r6f4c"

},
{
"ID": "MIOOI4E-5PWWT4F-QRRRSWG-PZAXB4I-E6STCCG-25TARPP-ONTUNLN-QFVQTAE",
"address": "tcp://10.244.0.27:22000",
"connected": true,
"deviceName": "volsync-sync-dokuwiki-f59cd4b9c-dhpjs"

}
]

We can also see that dokuwiki-central was introduced and connected to dokuwiki-west by dokuwiki-east:

Listing 14: Peers connected to dokuwiki-central

$ kubectl get replicationsource sync-dokuwiki -n dokuwiki-central -o jsonpath='{.status.
→˓syncthing.peers}' | jq
[
{
"ID": "LMZRG5Y-TPMJ3EW-HJ4C7EQ-IK2JPCY-YHXDWLW-T7G3XIX-VCKB4F6-EQ5X2QI",
"address": "tcp://10.96.246.238:22000",
"connected": true,
"deviceName": "volsync-sync-dokuwiki-f59cd4b9c-r6f4c",
"introducedBy": "TMBYRB4-EIINYAW-ZFBX4LV-7FE37NT-BLQPSKB-P2BFIPW-QW6ST3C-PSU7UQD"

},
{
"ID": "TMBYRB4-EIINYAW-ZFBX4LV-7FE37NT-BLQPSKB-P2BFIPW-QW6ST3C-PSU7UQD",
"address": "tcp://10.96.217.239:22000",
"connected": true,

(continues on next page)

54 Chapter 2. Usage

VolSync

(continued from previous page)

"deviceName": "volsync-sync-dokuwiki-f59cd4b9c-rhlxh"
}

]

Now, let’s get the external IPs to the dokuwiki-west and dokuwiki-central applications and view them in our
browser:

$ kubectl get svc -n dokuwiki-central dokuwiki-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
dokuwiki-service LoadBalancer 10.96.254.251 172.18.255.203 5196:31687/TCP 177m
$ kubectl get svc -n dokuwiki-west dokuwiki-service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
dokuwiki-service LoadBalancer 10.96.142.135 172.18.255.202 5196:32364/TCP 177m

Here’s how the main DokuWiki website appears in the dokuwiki-central namespace:

And here’s how it looks in the dokuwiki-west namespace:

2.6. Syncthing-based replication 55

VolSync

Now let’s create a new page from the dokuwiki-west namespace, click on the URL bar at the and append /
dokuwiki-west to the end of the URL, like this:

This should present us with a new page containing the message: “this topic does not exist yet.” Well let’s change that:
click on the “Create this page” button and fill it with the content of your choosing. In our case, we’re going to make a
page for our dokuwiki-west namespace.

Your end result should resemble something like this:

56 Chapter 2. Usage

VolSync

We can verify that this page has been synced to the DokuWiki instances in other namespaces by going to the
dokuwiki-central namespace and placing /doku.php?id=dokuwiki-west at the end of its URL, like this:

Once you hit Enter, you should see the page we had just created in the dokuwiki-west namespace appear in the
dokuwiki-central tab:

2.6. Syncthing-based replication 57

VolSync

And voila! You have just created a fully-connected Syncthing cluster in Kubernetes using VolSync, and made use of it
to synchronize data across a distributed application.

Contents

Syncthing-based replication

• How Syncthing Works In VolSync
• Configuring a ReplicationSource

– Syncthing options
– Source Status

• Hub and Spoke Synchronization
– Introducers To The Rescue
– Configuring Introducers
– Adding More Spokes
– Removing Spokes

• More on Introducers
– Transitive configuration
– Cyclic introducers

• Communicating With Syncthing

VolSync supports active-active synchronization of data across several PersistentVolumes using a Syncthing-based data
mover. ReplicationSource objects are configured to connect to other Syncthing devices in order to sync data of a
provided PVC. Any changes made to the PVC will be propagated to the rest of the peers sharing the volume.

2.6.2 How Syncthing Works In VolSync

Syncthing connects to a cluster of nodes sharing a synchronized volume. When one of the nodes syncing the volume
modifies the data in the PV, the change will be propagated to the rest of the nodes within the Syncthing cluster. Sync-
thing also includes an introducer feature which allows one device to be connected to a cluster of other devices upon
configuring a single introducer node. This can be used to create a hub-and-spoke model for replication, or any other
kind of network.

When a ReplicationSource is created and configured to sync a PVC with other peers, all of the connected peers will
maintain their own Volume containing the synced data. To detect file changes, Syncthing employs two methods: a
filesystem watcher, which notifies Syncthing of any changes to the local filesystem, and a full filesystem scan which
occurs routinely at a specified interval (default is an hour). Since Syncthing is an “always-on” synchronization system,
ReplicationSources will report their synchronization status as always being ‘in-progress’.

VolSync uses a custom-built Syncthing mover which disables the use of relay servers and global announce, and relying
instead on being provided with the addresses of other Syncthing peers directly.

Note: Syncthing is peer-to-peer technology which connects to other peers directly rather than going through interme-
diary servers. Because Syncthing lacks centralization, file conflicts are resolved by favoring the most recent version.

58 Chapter 2. Usage

https://docs.syncthing.net/users/syncing.html#conflicting-changes

VolSync

2.6.3 Configuring a ReplicationSource

Here’s an example of a Syncthing-based ReplicationSource.

Listing 15: ReplicationSource object configuring the peers it should con-
nect to.

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: sync-todo-database

spec:
sourcePVC: todo-database
syncthing:
serviceType: ClusterIP
List of peers that this ReplicationSource should connect to.
peers:
The Syncthing ID of the peer.

- ID: GVONGZX-6FVQPEY-4QWTVLK-TXNJUHA-5UGA625-UBC7HZQ-P5BG2XJ-EHJ4XQ3
The address of the peer - this will be used as a data connection.
address: tcp://10.96.55.168:22000
Whether or not the peer should introduce this ReplicationSource to other peers.
introducer: false

The above ReplicationSource tells VolSync that it should use the Syncthing replication method in order to sync the
todo-database volume.

A service type of ClusterIP is used to expose the Syncthing data port, allowing us to connect with other peers within
the cluster. In order for Syncthing to connect to peers outside of the cluster, you will need to either use serviceType:
LoadBalancer, or a submariner-type cross-cluster networking configuration. A single peer is specified for VolSync
to sync the todo-database volume with, however you can specify as many or as few peers as you’d like. To create a
simple ReplicationSource without connecting to other peers, simply omit the peers field.

In order for two Syncthing-based ReplicationSources to connect to each other, each one must specify the other one in
their peers list.

Note: Syncthing combines the set of files in the provided PersistentVolume with those from the other peers. When
two files have the same name, the file with the most recent data will be favored.

Syncthing options

Here are all of the options that can be specified for the Syncthing mover:

peers
A list of the Syncthing devices this ReplicationSource should sync the sourcePVC with. The peers being listed
must also specify this ReplicationSource’s Syncthing details in their spec for them to successfully connect with
one another. Each peer contains the following fields:

• ID - The peer’s device ID.

• address - The peer’s address that we will attempt to connect on. This will usually be a TCP connection.

• introducer - Whether this peer should act as an introducer node or not. If true, this peer will automatically
connect us to other nodes that also have it set as an introducer.

2.6. Syncthing-based replication 59

VolSync

serviceType
The type of service used to expose Syncthing’s data connection. Defaults to ClusterIP. Valid values are:

• ClusterIP - VolSync will expose the service through a ClusterIP; used for in-cluster networking.

• LoadBalancer - The Syncthing data port is exposed through a LoadBalancer, which is used for connecting
to other Syncthing instances outside of the cluster.

configCapacity
Amount of storage to be used by the PVC storing Syncthing’s configuration data. The default is 1Gi when left
unspecified.

configStorageClassName
The name of the storage class to use for the PVC storing Syncthing’s configuration data. When unspecified,
VolSync will default to the storage class being used by the source PVC.

configVolumeAccessModes
These are used to set the accessModes of the config PVC. When unspecified, these default to the accessModes
present on the source PVC.

Source Status

Once the ReplicationSource has been deployed and Syncthing has properly configured itself, it will populate the .
status.syncthing field with information about your Syncthing node.

Here’s an example of a ReplicationSource with a status:

Listing 16: ReplicationSource object with the Syncthing ID and address
highlighted.

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
name: sync-todo-database

spec:
sourcePVC: todo-database

metadata:
syncthing:
serviceType: ClusterIP
peers:
- ID: 7NDBKMJ-XU2GWGG-4JJ5B5M-ONSDVAK-ZDXHKVM-6X7XYB7-ZG4NYDI-ZQ6FHQ4
address: tcp://10.96.140.222:22000
introducer: true

status:
conditions:
- lastTransitionTime: "2022-04-27T20:26:23Z"
message: Synchronization in-progress
reason: SyncInProgress
status: "True"
type: Synchronizing

lastSyncStartTime: "2022-04-27T20:25:32Z"
syncthing:
This ReplicationSource's Syncthing ID.
ID: GVONGZX-6FVQPEY-4QWTVLK-TXNJUHA-5UGA625-UBC7HZQ-P5BG2XJ-EHJ4XQ3
This ReplicationSource's Syncthing address.
address: tcp://10.96.55.168:22000

(continues on next page)

60 Chapter 2. Usage

VolSync

(continued from previous page)

The Syncthing peers this ReplicationSource is connected to.
peers:
- # The Syncthing ID of the peer we're connected to.
ID: JDKRGMR-HOX3QQ6-N4OLXBD-VRLS3D4-2DBFELP-6QKIFYB-4ZP3YSF-Q37KAQU
The connected peer's Syncthing address.
address: tcp://10.96.168.12:22000
Whether or not we have an active connection with this peer.
connected: true
The connected device's local name. Here this is another Pod's name.
deviceName: volsync-syncthing-1-76dfbfb4d7-5fhc8
The Syncthing ID of the peer that introduced us to this peer
introducedBy: 7NDBKMJ-XU2GWGG-4JJ5B5M-ONSDVAK-ZDXHKVM-6X7XYB7-ZG4NYDI-ZQ6FHQ4

The above status displays your Syncthing ID in .status.syncthing.ID and address which other peers will need to
specify in order to connect to this ReplicationSource in .status.syncthing.address.

Additionally, it displays a list of peers that this ReplicationSource is connected to. Each peer listing contains the
following fields:

ID
The connected peer’s Syncthing device ID.

address
The connected peer’s address.

connected
A boolean indicating whether or not this ReplicationSource has an active connection to the listed peer.

deviceName
Friendly name associated with the other device, configured once upon connection.

introducedBy
The Syncthing ID of the peer that introduced us to this peer. This field will only appear for peers that have been
introduced to us.

2.6.4 Hub and Spoke Synchronization

So far we have shown you have to configure each ReplicationSource with every other peer’s information. As you can
probably tell, this requires more repetitive configuration as your Syncthing cluster gets larger. Luckily, there is a feature
that can be used to simplify this process.

Introducers To The Rescue

As mentioned in the previous section, VolSync provides an introducer setting that can be set on a peer-by-peer basis.
When another peer is configured to act as an introducer, it will introduce you to other peers that it’s sharing the folder
with. These introductions happen automatically, and are automatically removed once the introducer is removed from
the .spec.syncthing.peers list.

Note: Introduced peers should be left out of the .spec.syncthing.peers list, as it may lead to strange behavior.

Because VolSync disables global announce and global discover as a method of determining how to connect to other
peers, introduced Syncthing nodes will only be introduced and connected if they also configured the intermediary node
as an introducer. When nodes are introduced to you that did not configure the introducing node to introduce them,

2.6. Syncthing-based replication 61

VolSync

their device IDs will still be shared with you, but you will not be able to connect with them as their addresses are not
provided.

Configuring Introducers

For Example, suppose we have the following two ReplicationSources:

Listing 17: Two ReplicationSources configured in the hub-and-spoke pat-
tern.

Alice's ReplicationSource
apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: alice-rs

spec:
sourcePVC: alice-data
syncthing:
serviceType: ClusterIP
peers:
Bob's ReplicationSource
- ID: ZQF2PVB-UMNMXCF-HWMQ7DX-ELOWLPZ-OBNF7JM-XQSTFXE-O23GBWH-R5WPOQZ
address: tcp://bob.address:22000
introducer: false

Bob's ReplicationSource
apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: bob-rs

spec:
sourcePVC: bob-data
syncthing:
serviceType: ClusterIP
peers:
Alice's ReplicationSource
- ID: 7NDBKMJ-XU2GWGG-4JJ5B5M-ONSDVAK-ZDXHKVM-6X7XYB7-ZG4NYDI-ZQ6FHQ4
address: tcp://alice.address:22000
introducer: true

Here, alice-rs is being configured by bob-rs to act as an introducer for any nodes that are currently connected to
the shared PVC. At the moment, there are only N=2 Syncthing nodes in the entire cluster.

62 Chapter 2. Usage

VolSync

Adding More Spokes

Now, let’s suppose that we want to connect Charlie to everyone in the current cluster, but without having to append his
address and ID to the two other existing nodes.

In order to do this, we will need to update Alice’s peers to include Charlie’s Syncthing ID and address, as well as
update Charlie’s peers to include Alice with introducer: true set.

Listing 18: Alice’s ReplicationSource configured with Bob and Charlie’s
information.

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: alice-rs

spec:
sourcePVC: alice-data
syncthing:
serviceType: ClusterIP
peers:
Bob's ReplicationSource
- ID: ZQF2PVB-UMNMXCF-HWMQ7DX-ELOWLPZ-OBNF7JM-XQSTFXE-O23GBWH-R5WPOQZ
address: tcp://bob.address:22000
introducer: false

Charlie ReplicationSource
- ID: LUHH7KT-KYD47H5-NJ5LFD3-EF62KHJ-KW65NUI-5NJ6CTD-FL5IE6M-5XW7CQZ
address: tcp://charlie.address:22000
introducer: false

Listing 19: Charlie’s ReplicationSource configured with Alice as a hub.

apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: charlie-rs

spec:
sourcePVC: charlie-data
syncthing:
serviceType: ClusterIP
peers:
Alice's ReplicationSource
- ID: 7NDBKMJ-XU2GWGG-4JJ5B5M-ONSDVAK-ZDXHKVM-6X7XYB7-ZG4NYDI-ZQ6FHQ4
address: tcp://alice.address:22000
introducer: true

Once Charlie and Alice connect, Alice introduces Charlie to all of the other peers that have Alice configured as an
introducer, in this case she would introduce Charlie and Bob.

Configuring nodes this way allows us to have to only perform two operations anytime that we want to introduce a new
node to the rest of the cluster, rather than having to update every node in the cluster.

2.6. Syncthing-based replication 63

VolSync

Removing Spokes

In order to remove a spoke from the cluster, simply remove it from the Hub’s peers list.

For example, if Alice wants to remove Charlie, all she needs to do is remove the entry corresponding to his ID, and the
rest of the Syncthing cluster will automatically remove him from their connections.

Listing 20: Alice’s ReplicationSource configured to remove Charlie.

Alice's ReplicationSource
apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
name: alice-rs

spec:
sourcePVC: alice-data
syncthing:
serviceType: ClusterIP
peers:
bob's ReplicationSource
- ID: ZQF2PVB-UMNMXCF-HWMQ7DX-ELOWLPZ-OBNF7JM-XQSTFXE-O23GBWH-R5WPOQZ
address: tcp://bob.address:22000
introducer: false

charlie
#- ID: LUHH7KT-KYD47H5-NJ5LFD3-EF62KHJ-KW65NUI-5NJ6CTD-FL5IE6M-5XW7CQZ
address: tcp://charlie.address:22000
introducer: false

Once applied, Alice — along with all of the nodes that she had introduced to Bob — will remove Charlie from the
cluster. As a result, Charlie will be disconnected from the cluster and will no longer be syncing his version of the PVC.

Note: Using introducers is purely optional, and PVCs can still be synced regardless of how the cluster graph is
composed, so long that every node is connected to at least one other node in the cluster.

2.6.5 More on Introducers

Introducers are a great feature when it comes to usability, but there are some scenarios that users should generally avoid.

Transitive configuration

For one, Syncthing configures the introduced nodes automatically and uses the introducer as their controller. This
means that if Alice is the introducer for Bob and Charlie and removes Bob from her list of peers, Charlie’s node will
automatically remove Bob as well. Since Bob was connected to Charlie through Alice, once Bob loses Alice as the
introducer, he loses Charlie along with any other nodes that Alice had introduced him to.

64 Chapter 2. Usage

VolSync

Cyclic introducers

Syncthing introducers also contain a mechanism to automatically re-add introduced nodes if they were disconnected
for whatever reason. This means that if you configure two nodes as each other’s introducer, you will never be able to
disconnect them as they’ll continue to re-add each other until the end of time.

2.6.6 Communicating With Syncthing

Unlike the other data movers, Syncthing never stops running. This changes our approach of controlling it to having
Syncthing always be running, and communicating with it through it’s REST API.

Syncthing has a REST API which handles connections through HTTPS. In order to do this securely, VolSync provisions
a self-signed certificate and key for the Syncthing REST API, passing the generated certificate and key to Syncthing
on first launch, and adding the Public Key PEM to VolSync’s root CA bundle.

You can provide a custom HTTPS key/certificate pair by overriding the Secret which VolSync uses to store its commu-
nication credentials for Syncthing.

An example of a Secret which overrides the default Syncthing credentials is shown below, all fields must be provided:

Listing 21: Kubernetes Secret preloading custom HTTPS certificates

kind: Secret
apiVersion: v1
metadata:
this should be in the format: volsync-<REPLICATION_SOURCE_NAME>
name: volsync-my-replication-source

type: Opaque
all of these fields must be provided
data:
loaded by Syncthing
httpsKeyPEM: <your base64 encoded HTTPS private key>
loaded into Syncthing and used by VolSync as a root CA
httpsCertPEM: <your base64 encoded HTTPS certificate>
The API key used by VolSync to authenticate API requests
apikey: <base64-encoded API Key>
These fields are solely for securing the Web UI from being accessed.
username: <base64-encoded username>
password: <base64-encoded password>

Once you have deployed this secret in your intended namespace, you will then need to create the ReplicationSource
using the name you specified in the above Secret. For example, a custom secret named “volsync-my-replication-source”
would require you to name the ReplicationSource “my-replication-source”.

Note: This Secret must be created before creating the ReplicationSource. Otherwise, Syncthing will generate its own
set of credentials and ignore yours.

2.6. Syncthing-based replication 65

VolSync

2.7 VolSync CLI / kubectl plugin

2.7.1 Migrating data into Kubernetes

$ kubectl volsync migration
Copy data from an external file system into a Kubernetes PersistentVolume.

This set of commands is designed to help provision a PV and copy data from a
directory tree into that newly provisioned volume.

Usage:
kubectl-volsync migration [command]

Available Commands:
create Create a new migration destination
delete Delete a new migration destination
rsync Rsync data from source to destination

Example Usage

Example steps

• Create the migration destination

• Copy the data into the PVC

• Clean up

• Use the data in-cluster

The following example uses the kubectl volsync migration subcommand to migrate data from a stand-alone
storage system into a Kubernetes PersistentVolumeClaim.

External storage
A locally mounted directory tree (could be local disk or network-attached storage such as NFS or GlusterFS)

Destination cluster
OpenShift running on GCP with their CSI driver. Note: The VolSync operator must be installed in the destination
cluster.

Create the migration destination

Begin by creating a Namespace to hold the PVC (and eventually the application that will use the data).

$ kubectl create ns destination
namespace/destination created

Create a target for the data migration. If a capacity and accessModes are provided and the PVC does not already exist,
the VolSync CLI will create the PVC. Otherwise, it will use the existing PVC.

66 Chapter 2. Usage

VolSync

$ kubectl volsync migration create -r mig-example --capacity 2Gi --accessmodes␣
→˓ReadWriteOnce --storageclass standard-csi --pvcname destination/mydata
I0302 12:50:42.498947 168200 request.go:665] Waited for 1.007067079s due to client-side␣
→˓throttling, not priority and fairness, request: GET:https://api.ci-ln-72rwmxb-72292.
→˓origin-ci-int-gce.dev.rhcloud.com:6443/apis/project.openshift.io/v1?timeout=32s
I0302 12:50:43.925309 168200 migration_create.go:329] pvc: "mydata" not found, creating␣
→˓the same
I0302 12:50:43.974092 168200 migration_create.go:267] Namespace: "destination" is found,
→˓ proceeding with the same
I0302 12:50:44.021410 168200 migration_create.go:314] Created Destination PVC: "mydata"␣
→˓in NameSpace: "destination" and Cluster: ""
I0302 12:50:44.073745 168200 migration_create.go:357] Created ReplicationDestination:
→˓"destination-mydata-migration-dest" in Namespace: "destination" and Cluster: ""

$ kubectl get -n destination pvc/mydata
NAME STATUS VOLUME CAPACITY ACCESS MODES ␣
→˓STORAGECLASS AGE
mydata Bound pvc-c9040e1f-e3dd-49e4-aa5d-194079181f55 2Gi RWO ␣
→˓standard-csi 3m6s

Copy the data into the PVC

Once the destination has been created, we can use the CLI to transfer data into the cluster.

The data currently resides in the /tmp/data directory:

$ ls /tmp/data
./ ../ linux-4.1.51/

$ du -sh /tmp/data
643M /tmp/data

Sync this data into the cluster:

$ kubectl volsync migration rsync -r mig-example --source /tmp/data/
...
Number of files: 52,680 (reg: 49,453, dir: 3,213, link: 14)
Number of created files: 52,680 (reg: 49,453, dir: 3,213, link: 14)
Number of deleted files: 0
Number of regular files transferred: 49,453
Total file size: 556.98M bytes
Total transferred file size: 556.97M bytes
Literal data: 556.97M bytes
Matched data: 0 bytes
File list size: 524.26K
File list generation time: 0.001 seconds
File list transfer time: 0.000 seconds
Total bytes sent: 150.77M
Total bytes received: 961.29K

sent 150.77M bytes received 961.29K bytes 10.46M bytes/sec
total size is 556.98M speedup is 3.67

2.7. VolSync CLI / kubectl plugin 67

VolSync

Incremental changes can also be transferred:

$ echo "hello" > /tmp/data/hi.txt

$ kubectl volsync migration rsync -r mig-example --source /tmp/data/
I0302 13:37:37.698258 174966 request.go:665] Waited for 1.004977118s due to client-side␣
→˓throttling, not priority and fairness, request: GET:https://api.ci-ln-72rwmxb-72292.
→˓origin-ci-int-gce.dev.rhcloud.com:6443/apis/snapshot.storage.k8s.io/v1beta1?timeout=32s
I0302 13:37:39.093025 174966 migration_rsync.go:132] Extracting ReplicationDestination␣
→˓secrets
I0302 13:37:39.177009 174966 migration_rsync.go:190] Migrating Data from "/tmp/data/"␣
→˓to "\destination\mydata"
.d..t...... ./
<f+++++++++ hi.txt

Number of files: 52,681 (reg: 49,454, dir: 3,213, link: 14)
Number of created files: 1 (reg: 1)
Number of deleted files: 0
Number of regular files transferred: 1
Total file size: 556.98M bytes
Total transferred file size: 6 bytes
Literal data: 6 bytes
Matched data: 0 bytes
File list size: 0
File list generation time: 0.001 seconds
File list transfer time: 0.000 seconds
Total bytes sent: 806.41K
Total bytes received: 3.60K

sent 806.41K bytes received 3.60K bytes 147.28K bytes/sec
total size is 556.98M speedup is 687.61

Clean up

Once all the data has been transferred, the VolSync destination objects can be cleaned up:

$ kubectl volsync migration delete -r mig-example

Use the data in-cluster

We can now start a pod attached to the PVC and view the data:

Listing 22: pod.yaml

kind: Pod
apiVersion: v1
metadata:
name: busybox

spec:
containers:

(continues on next page)

68 Chapter 2. Usage

VolSync

(continued from previous page)

- name: busybox
image: busybox
command: ["/bin/sh", "-c"]
args: ["sleep 999999"]
volumeMounts:
- name: data
mountPath: "/mnt"

volumes:
- name: data
persistentVolumeClaim:
claimName: mydata

$ kubectl -n destination apply -f pod.yaml
pod/busybox created

$ kubectl -n destination exec -it pod/busybox -- ls -al /mnt
total 12
drwx--x--x 3 101587 101587 4096 Mar 2 18:37 .
dr-xr-xr-x 1 root root 73 Mar 2 18:39 ..
-rw------- 1 101587 101587 6 Mar 2 18:37 hi.txt
drwx--x--x 23 101587 101587 4096 Mar 27 2018 linux-4.1.51

$ kubectl -n destination exec -it pod/busybox -- du -sh /mnt
655.4M /mnt

2.7.2 Asynchronous replication

$ kubectl volsync replication
Replicate the contents of one PersistentVolume to another.

This set of commands is designed to set up and manage a replication
relationship between two different PVCs in the same Namespace, across
Namespaces, or in different clusters. The contents of the volume can be
replicated either on-demand or based on a provided schedule.

Usage:
kubectl-volsync replication [command]

Available Commands:
create Create a new replication relationship
delete Delete an existing replication relationship
schedule Set replication schedule for the relationship
set-destination Set the destination of the replication
set-source Set the source of the replication
sync Run a single synchronization

2.7. VolSync CLI / kubectl plugin 69

VolSync

Example usage

Example steps

• Kubectl configuration

• Deploy the application

• Set up replication

• Examining VolSync resources

• Manual synchronization

• Removing the replication

The following example uses the kubectl volsync replication subcommand to set up and manage cross-cluster
asynchronous replication of a PVC.

Application
A simple busybox pod that has a PVC attached

Source cluster
Kind cluster running on a local laptop using the hostpath CSI driver

Destination cluster
OpenShift running on GCP with their CSI driver

Kubectl configuration

The following steps assume that you have a kubeconfig defined that will allow access to both clusters (source and
destination) by switching between contexts.

$ kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* gcp ci-ln-nm63l9k-72292 admin

kind kind-kind kind-kind

A configuration like the above will allow directing requests to the different clusters via kubectl --context <name>.
Likewise, some of the VolSync CLI commands will refer to this context name (e.g., <context>/<namespace>/
<resource>).

Please see the Kubernetes documentation for details on how to set up your kubeconfig to access multiple clusters.

Deploy the application

The application is a simple busybox pod and an attached PVC.

Listing 23: pvc.yaml

kind: PersistentVolumeClaim
apiVersion: v1
metadata:
name: datavol

(continues on next page)

70 Chapter 2. Usage

https://kubernetes.io/docs/tasks/access-application-cluster/configure-access-multiple-clusters/

VolSync

(continued from previous page)

spec:
storageClassName: csi-hostpath-sc
accessModes:

- ReadWriteOnce
resources:
requests:
storage: 3Gi

Listing 24: pod.yaml

kind: Pod
apiVersion: v1
metadata:
name: busybox

spec:
containers:
- name: ubi
image: busybox
command: ["/bin/sh", "-c"]
args: ["sleep 999999"]
volumeMounts:
- name: data
mountPath: "/mnt"

volumes:
- name: data
persistentVolumeClaim:
claimName: datavol

Create the namespace and application objects:

$ kubectl --context kind create ns source
namespace/source created

$ kubectl --context kind -n source create -f pvc.yaml
persistentvolumeclaim/datavol created

$ kubectl --context kind -n source create -f pod.yaml
pod/busybox created

Set up replication

Create a replication relationship. We are naming the relationship “example”:

$ kubectl volsync replication -r example create

Set the source of the replication:

• The hostpath CSI driver supports volume cloning, so we’ll use “Clone” as our method to create a point-in-time
copy

• The name of the PVC to replicate is given as <cluster-context>/<namespace>/<name>

2.7. VolSync CLI / kubectl plugin 71

VolSync

$ kubectl volsync replication -r example set-source --copymethod Clone --pvcname kind/
→˓source/datavol

Set the destination:

Create a namespace on the destination cluster
$ kubectl --context gcp create ns destns
namespace/destns created

$ kubectl volsync replication -r example set-destination --copymethod Snapshot --
→˓storageclass standard-csi --volumesnapshotclass csi-gce-pd-vsc --servicetype␣
→˓LoadBalancer --destination gcp/destns/datavol

Begin replicating on a 5 minute schedule:

$ kubectl volsync replication -r example schedule --cronspec '*/5 * * * *'
I0216 13:51:22.165811 275823 replication.go:381] waiting for keys & address of␣
→˓destination to be available
I0216 13:51:32.296465 275823 replication.go:406] creating resources on Source

Examining VolSync resources

The above commands deployed a ReplicationSource and ReplicationDestination object on the two clusters:

$ kubectl --context kind -n source get replicationsource -oyaml
apiVersion: v1
items:
- apiVersion: volsync.backube/v1alpha1
kind: ReplicationSource
metadata:
creationTimestamp: "2022-02-16T20:07:30Z"
generation: 1
labels:
volsync.backube/relationship: 90d56bef-551d-4ede-b6a7-0783cabdafb6

name: datavol-87srf
namespace: source
resourceVersion: "13695"
uid: 7511b291-b768-4a2e-96cf-2eafd3854469

spec:
rsync:
address: 34.121.93.205
copyMethod: Clone
sshKeys: datavol-87srf

sourcePVC: datavol
trigger:
schedule: '*/5 * * * *'

status:
conditions:
- lastTransitionTime: "2022-02-16T20:07:58Z"
message: Waiting for next scheduled synchronization
reason: WaitingForSchedule
status: "False"

(continues on next page)

72 Chapter 2. Usage

VolSync

(continued from previous page)

type: Synchronizing
- lastTransitionTime: "2022-02-16T20:07:30Z"
message: Reconcile complete
reason: ReconcileComplete
status: "True"
type: Reconciled

lastSyncDuration: 28.732770544s
lastSyncTime: "2022-02-16T20:07:58Z"
nextSyncTime: "2022-02-16T20:10:00Z"
rsync: {}

kind: List
metadata:
resourceVersion: ""
selfLink: ""

$ kubectl --context gcp -n destns get replicationdestination -oyaml
apiVersion: v1
items:
- apiVersion: volsync.backube/v1alpha1
kind: ReplicationDestination
metadata:
creationTimestamp: "2022-02-16T20:06:10Z"
generation: 1
labels:
volsync.backube/relationship: 90d56bef-551d-4ede-b6a7-0783cabdafb6

name: datavol
namespace: destns
resourceVersion: "42743"
uid: 040dc4ad-6f37-43f1-9da4-b28d956f2bb7

spec:
rsync:
accessModes:
- ReadWriteOnce
capacity: 3Gi
copyMethod: Snapshot
serviceType: LoadBalancer
storageClassName: standard-csi
volumeSnapshotClassName: csi-gce-pd-vsc

status:
conditions:
- lastTransitionTime: "2022-02-16T20:06:10Z"
message: Reconcile complete
reason: ReconcileComplete
status: "True"
type: Reconciled

- lastTransitionTime: "2022-02-16T20:08:00Z"
message: Synchronization in-progress
reason: SyncInProgress
status: "True"
type: Synchronizing

lastSyncDuration: 1m50.209297869s
lastSyncStartTime: "2022-02-16T20:08:00Z"

(continues on next page)

2.7. VolSync CLI / kubectl plugin 73

VolSync

(continued from previous page)

lastSyncTime: "2022-02-16T20:08:00Z"
latestImage:
apiGroup: snapshot.storage.k8s.io
kind: VolumeSnapshot
name: volsync-datavol-dst-20220216200800

rsync:
address: 34.121.93.205
sshKeys: volsync-rsync-dst-src-datavol

kind: List
metadata:
resourceVersion: ""
selfLink: ""

When creating the resources, the CLI:

• Created the ReplicationDestination

• Waited for the LoadBalancer address and SSH keys to become available

• Copied the SSH keys from the destination cluster to a Secret in the source cluster

• Created the ReplicationSource referencing the Secret, the remote address, and having the supplied cronspec
schedule

Manual synchronization

The above steps establish a replication schedule wherein the source is periodically replicated to the destination. During
planned migration events, it is desirable to force a synchronization and synchronously wait for completion.

Assuming the CLI has been used as described above, a manual synchronization can be triggered via:

$ kubectl volsync replication -r example sync
I0216 15:19:19.832648 290779 replication.go:381] waiting for keys & address of␣
→˓destination to be available
I0216 15:19:19.954913 290779 replication.go:406] creating resources on Source
I0216 15:19:19.988886 290779 replication_sync.go:90] waiting for synchronization to␣
→˓complete

When this command returns, a new synchronization (and VolumeSnapshot) will have been completed. To resume
periodic synchronization, re-issue the kubectl volsync replication schedule command.

Removing the replication

When the replication relationship is no longer needed, it can be removed via:

$ kubectl volsync replication -r example delete

The above command removes the VolSync CRs and the SSH key Secret.

VolSync provides a CLI interface to assist in performing common operations using the VolSync operator.

All the tasks that can be accomplished via this CLI can also be performed by directly manipulating VolSync’s Repli-
cationSource and ReplicationDestination objects. It is meant as a simple shortcut for common operations:

• Setting up asynchronous data replication

74 Chapter 2. Usage

VolSync

• Migrating data into Kubernetes

2.7.3 Installation

The VolSync CLI (kubectl plugin) can be installed in several ways:

• Via krew (easiest)

• Downloading the latest released binary from GitHub

• From source (requires a working golang installation)

Krew

Krew is a plugin manager for the kubectl command. It automates the process of downloading, installing, and updating
kubectl plugins.

If you have Krew installed, you can install the VolSync plugin via:

Install the VolSync plugin
$ kubectl krew install volsync
Updated the local copy of plugin index.
Installing plugin: volsync
Installed plugin: volsync
\
| Use this plugin:
| kubectl volsync
| Documentation:
| https://github.com/backube/volsync
/
WARNING: You installed plugin "volsync" from the krew-index plugin repository.
These plugins are not audited for security by the Krew maintainers.
Run them at your own risk.

Use it...
$ kubectl volsync --version
volsync version v0.4.0+b710c5f

The plugin can be uninstalled via:

Uninstall the VolSync plugin
$ kubectl krew uninstall volsync
Uninstalled plugin: volsync

Future upgrades are also possible via kubectl krew upgrade volsync.

Binary release

The plugin is available on the VolSync Releases page. Download the kubectl-volsync.tar.gz and place the in-
cluded kubectl-volsync binary into your PATH. The plugin should then be available as a sub-command of kubectl:

$ kubectl volsync --version
volsync version v0.4.0+b710c5f

To uninstall, just delete the kubectl-volsync binary.

Source

2.7. VolSync CLI / kubectl plugin 75

https://krew.sigs.k8s.io/
https://github.com/backube/volsync/releases

VolSync

The plugin can be installed directly from source. This requires a working golang environment, but it also allows easily
choosing the version to be installed (even the latest code from main).

The latest Released version can be installed via:

$ go install github.com/backube/volsync/kubectl-volsync@latest
go: downloading github.com/backube/volsync v0.4.0

$ which kubectl-volsync
~/go/bin/kubectl-volsync

The latest code from main can be installed via:

$ go install github.com/backube/volsync/kubectl-volsync@main
go: downloading github.com/backube/volsync v0.3.1-0.20220512205923-e33a7e4d88b6

Once installation is complete, navigate to one of the documentation sub-pages for some CLI usage examples.

There are three different replication methods built into VolSync. Choose the method that best fits your use-case:

Rclone replication
Use Rclone-based replication for multi-way (1:many) scenarios such as distributing data to edge clusters from a
central site.

Restic backup
Create a Restic-based backup of the data in a PersistentVolume.

Rsync replication
Use Rsync-based replication for 1:1 replication of volumes in scenarios such as disaster recovery, mirroring to a
test environment, or sending data to a remote site for processing.

Syncthing replication
Use Syncthing-based replication for multi-way (many:many), live, eventually consistent data replication in sce-
narios where the data is spread-out and updated in real-time, such as a wiki application, or a private distributed
file-store.

2.8 Triggers

VolSync supports several types of triggers to specify when to schedule the replication.

2.9 Metrics

VolSync exposes a number of metrics that permit monitoring the status of replication relationships via Prometheus.

76 Chapter 2. Usage

CHAPTER

THREE

ENHANCEMENT PROPOSALS

3.1 A case for VolSync

Contents

• A case for VolSync

– Motivation

– Use cases

– Proposed solution

– Initial implementation

3.1.1 Motivation

As Kubernetes is used in an increasing number of critical roles, businesses are in need of strategies for being able to
handle disaster recovery. While each business has its own requirements and budget, there are common building blocks
employed across many DR configurations. One such building block is asynchronous replication of storage (PV/PVC)
data between clusters.

While some storage systems natively support async replication (e.g, Ceph’s RBD or products from Dell/EMC and
NetApp), there are many that lack this capability, such as Ceph’s cephfs or storage provided by the various cloud
providers. Additionally, it is sometimes advantageous to have different storage systems for the source and destination,
making vendor-specific replication schemes unworkable. For example, it can be advantageous to have different storage
in the cloud vs. on-prem due to resource or environmental constraints.

This project proposes to create a general method for supporting asynchronous, cross-cluster replication that can work
with any storage system supporting a CSI-based storage driver. Given a single configuration interface, the controller
would implement replication using the most efficient method available. For example, a simplistic CSI driver without
snapshot capabilities should still be supported via a best-effort data copy, but a storage system w/ inbuilt replication
capabilities should be able to use those mechanisms for fast, efficient data transfer.

77

VolSync

3.1.2 Use cases

While disaster recovery is the most obvious use for asynchronous storage replication, there are a number of different
scenarios that could benefit.

Case (1) - Async DR

As an application owner, I’d like to ensure my application’s data is replicated off-site to a potentially different secondary
cluster in case there is a failure of the main cluster. The remote copy should be crash-consistent such that my application
can restart at the remote site.

Once a failure has been repaired, I’d like to be able to “reverse” the synchronization so that my primary site can be
brought back in sync when the systems recover.

Case (2) - Off-site analytics

As a data warehouse owner, I’d like to periodically replicate my primary data to one or more secondary locations where
it can be accessed, read-only, by a scale-out ML or analytics platform.

Case (3) - Testing w/ production data

As a software developer, I’d like to periodically replicate the data from the production environment into an isolated
staging environment for continuous testing with real data prior to deploying application updates.

Case (4) - Application migration

As an application owner, I’d like to migrate my production stateful application to a different storage system (either on
the same or different Kubernetes cluster) with minimal downtime. I’d like to have the bulk of the data synchronized in
the background, allowing for minimal downtime during the actual switchover.

3.1.3 Proposed solution

Using CustomResources, it should be possible for a user to designate a PersistentVolumeClaim on one cluster (the
source) to be replicated to a secondary location (the destination), typically on a different cluster. An operator that
watches this CR would then initialize and control the replication process.

As stated above, remote replication should be supported regardless of the capabilities of the underlying storage system.
To accomplish this, the VolSync operator would have one or more built-in generic replication methods plus a mechanism
to allow offloading the replication directly to the storage system when possible.

Replication by VolSync is solely targeted at replicating PVCs, not objects. However, the source and destination volumes
should not need to be of the same volume access mode (e.g., RWO, RWX), StorageClass, or even use the same CSI
driver, but they would be expected to be of the same volume mode (e.g., Block, Filesystem).

78 Chapter 3. Enhancement proposals

VolSync

Potential replication methods

For specific storage systems to be able to optimize, the replication and configuration logic must be modular. The method
to use will likely need to be specified by the user as there’s no standard Kubernetes method to query for capabilities
of CSI drivers or vendor storage systems. When evaluating the replication method, if the operator does not recognize
the specified method as one internal to the operator, it would ignore the replication object so that an different (storage
system-specific) operator could respond. This permits vendor-specific replication methods without requiring them to
exist in the main VolSync codebase.

There are several methods that could be used for replication. From (approximately) least-to-most efficient:

1) Copy of live PVC into another PVC

• This wouldn’t require any advanced capabilities of the CSI driver, potentially not even dynamic provisioning

• Would not create crash-consistent copies. Volume data would be inconsistent and individual files could be
corrupted. (Gluster’s georep works like this, so it may have some value)

• For RWO volumes, the copy process would need to be co-scheduled w/ the primary workload

• Copy would be via rsync-like delta copy

2) Snapshot-based replication

• Requires CSI driver to support snapshot

• Source would be snapshotted, the snapshot would be used to create a new volume that would then be
replicated to the remote site

• Copy would be via rsync-like delta copy

• Remote site would snapshot after each complete transfer

3) Clone-based replication

• Requires CSI driver to support clone

• Source would be cloned directly to create the source for copying

• Copy would be via rsync-like delta copy

• Remote site would snapshot after each complete transfer

4) Storage system specific

• A storage system specific mechanism would need to both set up the relationship and handle the sync.

• Our main contribution here would be a unifying API to provide a more consistent interface for the user.

Built-in replication

With the exception of the storage system specific method, the other options require the replication to be handled by
VolSync, copying the data from the source to the destination volume.

It is desirable for VolSync’s replication to be relatively efficient and only transfer data that has changed. As a starting
point for development, it should be possible to use a pod running rsync, transferring data over an ssh connection.

3.1. A case for VolSync 79

https://rsync.samba.org/

VolSync

3.1.4 Initial implementation

The initial VolSync implementation should be focused on providing a minimal baseline of functionality that provides
value. As such, the focus will be providing clone-based replication via an rsync data mover, and this implementation
will assume both the source and destination are Kubernetes clusters.

3.2 Configuration and CRDs

This document covers the rationale for how VolSync is configured and the structure of the CustomResourceDefinitions.

Contents

• Configuration and CRDs

– Representation of relationships

– Proposed CRDs

3.2.1 Representation of relationships

One of the main interaction points between users and VolSync will be centered around configuring the replication
relationships between volumes. When looking at the use cases presented in the overview of VolSync, there are several
commonalities and differences.

Replication triggers

Depending on the use case, the “trigger” for replication may be different. For example, in the case of asynchronous
replication for disaster recovery, it is desirable to have the volume(s) replicated at some predictable frequency (e.g.,
every five minutes). This bounds the amount of data loss that would be incurred during a failover. Some of the other
use cases could benefit from scheduled replication (e.g., every day at 3:00am) such as the case of replicating from
production to a testing environment. Still other cases may want the replication to be triggered on-demand or via a
webhook since it may be desirable to replicate data once a certain action or processing has completed.

Bi-directional vs. uni-directional

Use cases such as disaster recovery naturally desire the replication to be bi-directional (i.e., reversible) so that once the
primary site recovers, it can be brought back into sync and the application transitioned back. However, many of the
other use cases only desire uni-directional replication— the primary will always remain so.

Further, when volumes are being actively replicated-to (i.e., they are the secondary), they are not in a usable state.
Some storage systems actively block their usage until they are “promoted” to an active state, halting or reversing the
replication. At best, even if not blocked, the secondary should not be used while replication is ongoing due to the po-
tential of accessing inconsistent data. This has implications on the representation of the “volume” within a Kubernetes
environment. For example, it is assumed that a PV/PVC, if bound, is usable by a pod, so exposing a secondary volume
as a PV/PVC pair to the user is likely to cause confusion.

Based on the above, a clean interface for the user is likely to be one where a primary PVC is replicated to a destination
location as a uni-directional relationship, and the secondary is not visible as a PVC until a “promotion” action is taken.

80 Chapter 3. Enhancement proposals

mover-rsync.html

VolSync

The lack of a secondary PVC until promotion is what precludes the bi-directional relationship. Instead, two uni-
directional relationships could be created. The second, “reverse” relationship would not initially be active since its
source PVC would not exist until a secondary volume is promoted.

3.2.2 Proposed CRDs

Since one of the main objectives in the design is to allow storage system specific replication methods, this must be
considered when designing the CRDs that will control replication. In order to accommodate separate release timelines
and licensing models, it is also desirable for those replication methods to be external to the main VolSync operator.
Only a baseline, general replication method needs to be directly integrated.

To achieve the desired flexibility, the CRDs can be structured similar to the Kubernetes StorageClass object which
defines a “provisioner” and permits a set of provisioner-specific parameters passed as an arbitrary set of key/value
strings.

With the above considerations in mind, the primary side of the replication relationship could be defined as:

Listing 1: CRD defining the source volume to replicate

apiVersion: volsync/v1alpha1
kind: Source
metadata:
name: myVolMirror
namespace: myNamespace

spec:
Source PVC to replicate
source: my-pvc
When/how often to replicate
trigger:
Cronspec for mirroring frequency or schedule
schedule: "*/10 * * * * *"

Method of replication. Either built-in "rsync" or an external method
(e.g., "ceph.io/rbd-async")
replicationMethod: Rsync
Method-specific configuration parameters
parameters: # map[string]string
param1: value2

status:
Method-specific status
methodStatus: # map[string]string
status1: value2

conditions: # general conditions

The secondary side is configured similarly to the primary, but without the trigger specification:

Listing 2: CRD defining the replication destination

apiVersion: volsync/v1alpha1
kind: Destination
metadata:
name: myVolMirror
namespace: myNamespace

spec:
replicationMethod: Rsync

(continues on next page)

3.2. Configuration and CRDs 81

https://kubernetes.io/docs/concepts/storage/storage-classes/

VolSync

(continued from previous page)

parameters:
param1: value2

status:
methodStatus:
status1: value2

conditions:

3.3 Rsync-based data mover

This document covers the design of the rsync-based data mover.

Contents

• Rsync-based data mover

– Overview

– Replication flow

– Setup

3.3.1 Overview

To meet the goal of being able to replicate arbitrary volumes, VolSync must have a built-in, baseline replication method.
Rsync is a well-known and reasonably efficient method to synchronize file data between two locations. It supports both
data compression as well as differential transfer of data. Further, its support of ssh as a transport allows the data to be
transferred securely, authenticating both sides of the communication.

3.3.2 Replication flow

1) A point-in-time image of the primary application’s data is captured by cloning the application’s PVC. This new
“replica source” PVC serves as the source for one iteration of replication.

2) A data mover pod is started on the primary side that syncs the data to a data mover pod on the secondary side.
The data is transferred via rsync (running in the mover pods) over ssh. A shared set of keys allows mutual
authentication of the data movers.

3) After successfully replicating the data to a target PVC on the secondary, the secondary PVC is snapshotted to
create a point-in-time copy that is identical to the image captured in step 1.

4) The process can be repeated, beginning again with step 1. Subsequent transfers will only need to transfer changed
data since the target PVC on the secondary is re-used with each iteration.

82 Chapter 3. Enhancement proposals

https://rsync.samba.org/

VolSync

Failover

When the primary application has failed, the secondary site should take over. In order to start the application on the
secondary site, the synchronized data must be made accessible in a PVC.

As a part of bringing up the application, its PVC is created from the most recent “replica snapshot”. This promotion of
the snapshot to a PVC is only necessary during failover. The majority of the time (i.e., while the primary is properly
functioning), old replica snapshots will be replaced with a new snapshot at the end of each round of synchronization.

Resynchronization

After the primary site recovers, its data needs to be brought back in sync with the secondary (currently the active site).
This is accomplished by having a reverse synchronization path identical to the flow above but with data flowing from
the secondary site to the primary.

The replication from secondary to primary can be configured a priori, with the data movement only happening after
failover. For example, the reverse replication would use “Secondary PVC” from the above diagram as the volume to
replicate. In normal operation, this volume would not exist, idling the reverse path. Once the secondary site becomes
the active site, that PVC would exist, allowing the reverse synchronization to flow, resulting in replicated snapshots on
the primary side. These can later be used to recreate the “Primary PVC”, thus restoring the application to the primary
site.

3.3.3 Setup

As a part of configuring the rsync replication, a CustomResource needs to be created on both the source and destination
cluster. This configuration must contain:

Connection information
Synchronization is handled via a push model— the source creates the connection to the destination cluster. As
such, the source must be provided with the host/port information necessary to contact the destination.

Authentication credentials
An ssh connection is used to carry the rsync traffic. This connection is made via shared public keys between
both sides of the connection. This allows the destination (ssh server) to authenticate the source (client) as well
as allowing the source to validate the destination (by checking an associated ssh host key).

3.3. Rsync-based data mover 83

VolSync

In order to make the configuration as easy as possible, the destination CR should be created first. When reconciling, the
operator will generate the appropriate ssh keys and connection information in a Kubernetes Secret, placing a reference
to that secret in the Destination CR’s status.methodStatus map.

This Secret will then be copied to the source cluster and referenced in spec.parameters when creating the Source
CR.

3.4 Restic-based data mover

Enhancement status

Status: Proposed

This is a proposal to add Restic as an additional data mover within VolSync. Restic is a data backup utility that copies
the data to an object store (among other options).

While the main purpose of VolSync is to perform asynchronous data replication, there are some use cases that are
more “backup oriented” but that don’t require a full backup application (such as Velero). For example, some users may
deploy and version control their application via GitOps techniques. These users may be looking for a simple method
that allows preserving (off-cluster) snapshots of their storage so that it can be restored if necessary.

3.4.1 Considerations

The ReplicationSource and ReplicationDestination CRs of VolSync would correspond to the backup and restore
operations, respectively, of Restic. Furthermore, there are repository maintenance operations that need to be addressed.
For example, Restic manages the retention of old backups (via its forget operation) as well as freeing objects that are
no longer used (via its prune operation).

While both Restic and Rclone read/write to object storage, their strengths are significantly different. The Rclone data
mover is primarily designed for managing 1-to-many replication relationships, using the object store as an intermediary.
On each sync, Rclone updates the object bucket to be identical to the current version of the source volume, making
no attempt to preserve previous images. This works well for replication scenarios, but it may not be desirable when
protection from accidental data deletion is desired. On the other hand, Restic is well suited for maintaining a series
of historical versions in an efficient manner, but it is not designed for syncing data. The restore operation makes no
allowance for small delta transfers.

3.4.2 CRD for Restic mover

In the normal case, the expected usage would be to have a ReplicationSource that controls the periodic backups of the
data. It would use the same “common volume options” that Rsync and Rclone use to create a point-in-time image prior
to copying the data.

84 Chapter 3. Enhancement proposals

https://restic.readthedocs.io/en/stable/

VolSync

Backup

Given that in the normal case, only the ReplicationSource would be used, the repository maintenance options should
be set there.

apiVersion: volsync/v1alpha1
kind: ReplicationSource
metadata:
name: source
namespace: myns

spec:
sourcePVC: pvcname
trigger:
schedule: "0 * * * *" # hourly backups

restic:
Standard volume options
ReplicationSourceVolumeOptions

Restic-specific options
pruneIntervalDays: # How often to prune the repository (*int)
repository: # Secret name containing repository info (string)
Retention policy for the backups
retain:
last: # Keep the last n snapshots (*int)
hourly: # Keep n hourly (*int)
daily: # Keep n daily (*int)
weekly: # Keep n weekly (*int)
monthly: # Keep n monthly (*int)
yearly: # Keep n yearly (*int)
within: # Keep all within this duration (e.g., "3w15h") (*string)

The .spec.restic.repository Secret reference in the above structure refers to a Secret in the same Namespace of
the following format. The Secret’s “keys” correspond directly to the environment variables supported by Restic.

apiVersion: v1
kind: Secret
metadata:
name: resticRepo

type: Opaque
data:
The repository url
RESTIC_REPOSITORY: s3:s3.amazonaws.com/bucket_name
The repository encryption key
RESTIC_PASSWORD: XXXXX
ENV vars specific to the back end
https://restic.readthedocs.io/en/stable/030_preparing_a_new_repo.html
AWS_ACCESS_KEY_ID: (access key)
AWS_SECRET_ACCESS_KEY: (secret key)

3.4. Restic-based data mover 85

VolSync

Restore

For now, with VolSync, the intention is to only support restoring the latest version of the backed-up data. For retrieving
previous backups (that are still retained), Restic can be directly run against the repository, using the same information
as in the Secret, above.

Restore would be handled by the following ReplicationDestination:

apiVersion: volsync.backube/v1alpha1
kind: ReplicationDestination
metadata:
name: dest-sample

spec:
trigger:
schedule: "30 * * * *"

restic:
Standard volume options
ReplicationDestinationVolumeOptions

Restic-specific options
repository: # Secret name containing repository info (string)

There are comparatively few configuration options for Restore.

3.4.3 Open issues

The following items are open questions:

• Should ReplicationDestination support scheduling or should it be based on a single restore (i.e., it “syncs” once
then never again)? This could also be simulated by having an arbitrarily long schedule since the 1st sync is
immediate.

• Are Restic operations fast enough to make this viable?

– The prune operation is documented as being rather slow

– How long does it take to scan the storage to determine what needs to be backed up?

• Restic uses locks on the repository. Does the lack of concurrency present a problem for us? (Some can be done
w/o locks. . . which ones?)

• What is the right way to expose prune?

– It is the method for freeing space in the repo, but may be too expensive to run frequently

3.5 RWO volume affinity

Contents

86 Chapter 3. Enhancement proposals

VolSync

RWO volume affinity

• Problem
• Approach

– Finding Pods
– Co-scheduling the mover
– Scheduling changes

• Limitations
– Resource constraints
– Interrupting the mover w/ rescheduling
– Rescheduling delay

This document presents the design for co-scheduling data movers with application Pods so that ReadWriteOnce volumes
can be live-replicated.

3.5.1 Problem

It is sometimes desirable to configure VolSync to sync data (ReplicationSource) from a “live” volume (i.e., one that
is currently being used by the application). This corresponds to a copyMethod: Direct setting in the Replication-
Source. Some scenarios where this is useful include:

• When the CSI driver backing the source volume does not support clones or snapshots

• If the CSI driver is very inefficient at clone/snapshot objects (i.e., it internally performs a full data copy)

• If the source volume is not backed by a CSI driver

If the volume to be replicated has an accessMode of ReadWriteMany (RWX), the live volume can easily be replicated
since there are no problems with the application and the VolSync mover accessing the same PVC simultaneously.

However, in the case of ReadWriteOnce (RWO) volumes, the PVC may only be accessed by a single Node at a time.
If multiple Pods are to simultaneously access the volume, they must be co-scheduled to the same Node. Unfortunately,
the Kubernetes scheduler does not take this into account when scheduling Pods. The result is that the VolSync mover
pod is unlikely to be assigned to the same node as the primary application. This will result in it failing to start since
the PVC will not be able to be mounted.

3.5.2 Approach

In cases where the ReplicationSource is configured with copyMethod: Direct and the sourcePVC has
accessMode: ReadWriteOnce, VolSync should ensure the mover Pod is placed on the same Node as the primary
workload. The below discussion only applies to such cases; all others will not be intentionally co-scheduled.

Finding Pods

Given a ReplicationSource and its associated sourcePVC, it is necessary to locate any Pods that are using the PVC.
Unfortunately, there is no direct way to locate the Pod(s) directly from the PVC object.

Since PVCs are namespaced, it is guaranteed that any users of the PVC reside within that same Namespace. We
need to list all Pods in the Namespace and search their .spec.volumes[] list to determine whether it contains a
persistentVolumeClaim.name that matches sourcePVC. A number of scenarios are possible:

No Pods are found to be using the PVC
The mover can be scheduled without concern for affinity.

3.5. RWO volume affinity 87

VolSync

Exactly one Pod is using the PVC
The mover should be scheduled to the same Node.

Multiple Pods are using the PVC
If multiple Pods are successfully using the PVC, they must be scheduled to the same node. Therefore, any Pod
that is currently in the .status.phase: Running can be used to determine the proper Node for scheduling
purposes. It is possible that other Pods are attempting to use the PVC but are Pending because they cannot mount
the volume. To handle this case, when looking for matching Pods, preference must be given to the Running Pods.

Co-scheduling the mover

Given the name of a Pod with which the mover needs to be co-scheduled, the scheduling can be handled by directly
assigning the mover to the same node. The current node for the application can be read from .spec.nodeName. This
can be copied into the mover’s .spec.nodeName (within the Job template). By directly specifying the node name, it
will skip the scheduling pass and be directly picked up by kubelet on the named node.

In addition to directly specifying the name of the Node, it is important that the mover pod have the same set of tolerations
as the application Pod to ensure it has access to the same set of Nodes. This can be handled by directly copying the list
of tolerations from .spec.tolerations to the mover.

Scheduling changes

The application’s Pod(s) can be rescheduled for a number of reasons, and VolSync must be able to adapt in order to
avoid interfering with the application. To this end, it is necessary to periodically re-scan the Pods and adjust the mover
placement appropriately. These changes follow the logic documented above, potentially adding, removing, or changing
the .spec.nodeName field in the Job template.

3.5.3 Limitations

These are some limitations of the proposed approach.

Resource constraints

The Node that is being used by the application may not have sufficient resources to run the mover Pod. This will prevent
the mover from starting until resources become available (if ever). The only way to handle this would be to re-schedule
the application Pod to a Node that has more free resources. Adjusting the application in this way is beyond the scope
of VolSync.

Is there a way that we could allow the user to reliably intervene?

Interrupting the mover w/ rescheduling

While it is important to ensure that VolSync does not prevent the application from running, there is a trade-off between
responding to changes and needlessly interrupting the mover. In this design, we err on the side of interrupting the mover.
Since synchronization cycles are typically short, restarting the mover is unlikely to lose much work. Additionally,
application restarts are expected to be rare, further lowering the cost.

While we could choose to allow the mover to run to completion prior to updating the node & tolerations, there would
need to be special cases for long-running movers like Syncthing.

88 Chapter 3. Enhancement proposals

VolSync

Rescheduling delay

It will be necessary for VolSync to periodically re-reconcile while movement is InProgress so that updates to the
scheduling can be detected and performed. This is planned to be handled in a time-based manner as opposed to setting
up a Watch on Pods. This can potentially introduce a scheduling delay for the application of up to the re-reconcile
interval (e.g., 1 minute) in cases where the mover is running and the application gets (re)scheduled.

This may be able to be handled via a Watch on the application Pod. However, it would be necessary to annotate the
application Pod. It’s unclear how feasible this would be.

Asynchronous volume replication for Kubernetes CSI storage

VolSync is a Kubernetes operator that performs asynchronous replication of persistent volumes within, or across, clus-
ters. The replication provided by VolSync is independent of the storage system. This allows replication to and from
storage types that don’t normally support remote replication. Additionally, it can replicate across different types (and
vendors) of storage.

The project is still in the early stages, but feel free to give it a try.

To get started, see the installation instructions.

Check us out on GitHub https://github.com/backube/volsync

3.5. RWO volume affinity 89

https://github.com/backube/volsync

	Installation
	Development
	RBAC permissions
	Kubernetes & OpenShift
	Configuring CSI storage

	Usage
	Triggers
	Always
	Schedule
	Manual

	Metrics & monitoring
	Available metrics
	Obtaining metrics
	Configuring Prometheus
	Monitoring VolSync

	Rclone-based replication
	Rclone Database Example
	Understanding rclone-secret
	Deploy rclone-secret

	Source configuration
	Source status
	Additional source options

	Destination configuration
	Destination status
	Additional destination options

	Restic-based backup
	Restic Database Example
	Restic backup
	Creating source PVC to be backed up
	Restic Repository Setup
	ReplicationSource

	Restoring the backup

	Backing up multiple PVCs to the same S3 bucket
	Example of backing up 2 PVCs, pvc-a and pvc-b:

	Specifying a repository
	Configuring backup
	Backup options

	Performing a restore
	Restore options

	Using a custom certificate authority

	Rsync-based replication
	Rsync Database Example
	Moving data into Kubernetes w/ Rsync
	Manual SSH key generation
	Generating keys
	Creating secrets
	Replication destination configuration

	Destination configuration
	Destination status
	Additional destination options

	Source configuration
	Source status
	Additional source options

	Rsync-specific considerations
	Copying the SSH key secret
	Choosing between Service types (ClusterIP vs LoadBalancer)

	Syncthing-based replication
	Syncthing Dokuwiki Example
	How Syncthing Works In VolSync
	Configuring a ReplicationSource
	Syncthing options
	Source Status

	Hub and Spoke Synchronization
	Introducers To The Rescue
	Configuring Introducers
	Adding More Spokes
	Removing Spokes

	More on Introducers
	Transitive configuration
	Cyclic introducers

	Communicating With Syncthing

	VolSync CLI / kubectl plugin
	Migrating data into Kubernetes
	Example Usage
	Create the migration destination
	Copy the data into the PVC
	Clean up
	Use the data in-cluster

	Asynchronous replication
	Example usage
	Kubectl configuration
	Deploy the application
	Set up replication
	Examining VolSync resources
	Manual synchronization
	Removing the replication

	Installation

	Triggers
	Metrics

	Enhancement proposals
	A case for VolSync
	Motivation
	Use cases
	Case (1) - Async DR
	Case (2) - Off-site analytics
	Case (3) - Testing w/ production data
	Case (4) - Application migration

	Proposed solution
	Potential replication methods
	Built-in replication

	Initial implementation

	Configuration and CRDs
	Representation of relationships
	Replication triggers
	Bi-directional vs. uni-directional

	Proposed CRDs

	Rsync-based data mover
	Overview
	Replication flow
	Failover
	Resynchronization

	Setup

	Restic-based data mover
	Considerations
	CRD for Restic mover
	Backup
	Restore

	Open issues

	RWO volume affinity
	Problem
	Approach
	Finding Pods
	Co-scheduling the mover
	Scheduling changes

	Limitations
	Resource constraints
	Interrupting the mover w/ rescheduling
	Rescheduling delay

